Investigation and quantification of the potential antioxidant, inflammatory, and antibacterial bioactive molecules of the extracts of Algerian black and green table olive brine

Main Article Content

Nadia Mohamadi
Messaouda Meraghni
Foued Meradci
Asma Necib
Mehdi El Arbi
Khaoula Elhadef
Slim Smaoui
Mohamed Bouaziz

Keywords

table olive, polyphenols, ortho-diphenols, HPLC-DAD, hydroxytyrosol, antioxidants, activity

Abstract

The table olive industry produces a large amount of wastewater that can be expensive to be treated and harmful to the environment. This study aimed to find a way to reuse brine water from the production of black and green table olive brines from Bejaia and Mascara of the Sigoise cultivar in order to create a valuable byproduct and contribute to sustainable development. In this context, the high-performance liquid chromatography–diode-array detection (HPLC-DAD) analysis revealed the highest concentration of hydroxytyrosol (4-(2-dihydroxy phenyl ethanol); 69.67 mg/100 mg) for green table olive brines of Mascara (EOGM) and tyrosol (Ty) (28.8 mg/100 mg) for black table olive brines of Bejaia (EOBB). Presence of polyphenols and ortho-diphenols could be responsible for their antioxidant, anti-inflammatory, and antibacterial properties. To assess antioxidant activity, the scavenging effects of DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,20-Azinobis[3-ethylbenzothiazoline-6-sulfonate]) radicals as well as hydrogen peroxide (H2O2) radicals were used. The antimicrobial activity showed that the black olive extract exhibited the best inhibitory effect, with a minimum inhibitory concentration (MIC) ranging from 0.625 mg/mL to 0.31 mg/mL. The anti-inflammatory activity of tested extracts of black olives of Bejaia (EOBB) and green of olives Mascara (EOGM) was 20.06 µg/mL and 20.21 µg/mL, respectively, which demonstrated the anti-inflammatory effect of these extracts on human beings.

Abstract 545 | PDF Downloads 424 HTML Downloads 30 XML Downloads 22

References

Achmon, Y. and Fishman, A., 2015. The antioxidant hydroxytyrosol: biotechnological production challenges and opportunities. Applied Microbiology and Biotechnology 99(3): 1119–1130. 10.1007/s00253-014-6310-6

Akermi S., da Silva Almeida J.R.G., Khedher A, Bouzenna H., Dhibi S., Feriania A., et al. 2020. Neuroprotective effect of the essential oil of Lavandula officinalis against hydrogen peroxide-induced toxicity in mice. Pharmacognosy Magazine 16(71): 464. :10.4103/pm.pm_460_19

Allaoui, S., Bennani, M.N., Ziyat, H., Qabaqous, O., Tijani, N. and Ittobane, N., 2020. Removing polyphenols contained in olive mill wastewater by membrane based on natural clay and hydrotalcite Mg-Al. Moroccan Journal of Chemistry 8(1): 8–1. 10.48317/IMIST.PRSM/morjchem-v8i1.19171

Barbieri, S., Mercatante, D., Balzan, S., Esposto, S., Cardenia, V., Servili, M., et al. 2021. Improved oxidative stability and sensory quality of beef hamburgers enriched with a phenolic extract from olive vegetation water. Antioxidants 10: 1969. 10.3390/antiox10121969

Belaqziz, M., El-Abbassi, A., Agrafioti, E., Galanakis, C.M., 2016. Agronomic application of olive mill wastewater affects maize production and soil properties. Journal of Environmental Management 171: 158–165. 10.1016/j.jenvman.2016.02.006

Benincasa, C., Pellegrino, M., Romano, E., Claps, S., Fallara, C. and Perri, E., 2022. Qualitative and quantitative analysis of phenolic compounds in spray-dried olive mill wastewater. Frontiers in Nutrition 8: 782693. 10.3389/fnut.2021.782693

Benlarbi, F., Stoker, P. and Yousfi, M., 2018. Investigation of antioxidant and antihemolytic activities of Algerian defatted olive fruits (Olea europaea L.) at two ripening stages. Mediterranean Journal of Nutrition and Metabolism 11(3): 217–233. 10.3233/MNM-17187

Bonatsou, S. and Panagou, E.Z., 2022. Fermentation of cv. kalamata natural black olives with potential multifunctional yeast starters. Foods 11(19): 3106.c. 10.3390/foods11193106

Brenes, M., García-Serrano, P., Brenes-Álvarez, M., Medina, E., García-García, P. and Romero, C., 2022. Dehydrated black olives from unfermented and alkali-treated green olives. Food Science and Technology (LWT) 172: 114177. 10.1016/j.lwt.2022.114177

Britton, G.J., Contijoch, E.J., Mogno, I., Vennaro, O.H., Llewellyn, S.R., Ng, R., et al. 2019. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50(1): 212–224. 10.1016/j.immuni.2018.12.015

Cardinali, A., Pati, S., Minervini, F., D’Antuono, I., Linsalata, V. and Lattanzio, V., 2012. Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. Journal of Agricultural and Food Chemistry 60(7): 1822–1829. 10.1021/jf204001p

Charoenprasert, S. and Mitchell, A., 2012. Factors influencing phenolic compounds in table olives (Olea europaea). Journal of Agricultural and Food Chemistry 60(29): 7081–7095. 10.1021/jf3017699

Ciriminna, R., Meneguzzo, F., Fidalgo, A., Ilharco, L.M. and Pagliaro, M., 2016. Extraction, benefits and valorization of olive polyphenols. European Journal of Lipid Science and Technology 118(4): 503–511. 10.1002/ejlt.201500036

Elhadef, K., Akermi, S., Ben Hlima, H., Ennouri, K., Fourati, M., Ben Braïek, O. et al., 2021a. Tunisian pistachio hull extracts: phytochemical content, antioxidant activity, and foodborne pathogen inhibition. Journal of Food Quality 2021. Article ID 9953545. Epub ahead of print. 10.1155/2021/9953545

El Moudden, H., El Idrissi, Y., Belmaghraoui, W, Belhoussaine, O., El Guezzane, C., Bouayoun, T. et al., 2020. Olive mill wastewater polyphenol-based extract as a vegetable oil shelf life extending additive. Journal of Food Processing and Preservation, 44(12): e14990.

Gargouri, O.D., Gargouri, B., Trabelsi, S.K., Bouaziz, M., Abdelhédi, R., 2013. Synthesis of 3-O-methylgallic acid a powerful antioxidant by electrochemical conversion of syringic acid. Biochimica et Biophysica Acta (BBA)-General Subjects 1830(6): 3643–3649. 10.1016/j.bbagen.2013.02.012

Ghanbari, R., Anwar, F., Alkharfy, K.M., Gilani, A.H. and Saari, N., 2012. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review. International Journal of Molecular Sciences 13(3): 3291–3340. 10.3390/ijms13033291

Gopalasatheeskumar, K. Different Extraction Methods for the Extraction of Phenolics, Flavonoids, Antioxidant and Antidiabetic Phytochemicals from Momordica cymbalaria Leaves. Indian Journal of Natural Sciences 12(70): 976-0997.

Guan, T., Li, N., Gao, Y., Zhang, L., Hu, Q., Li, H. et al., 2022. Interaction behavior between bisphenol AP and pepsin: insights from density functional theory, and spectroscopic and molecular dynamic simulation. Quality Assurance and Safety of Crops & Foods 14(2): 1–12. 10.15586/qas.v14i2.1023

Gueboudji, Z., Kadi, K. and Nagaz, K., 2021. Extraction and quantification of polyphenols of olive oil mill wastewater from the cold extraction of olive oil in the region of Khenchela-Algeria. Genetics & Biodiversity Journal 5(2): 116–122. 10.46325/gabj.v5i2.79

Hong, M., Yu, J., Wang, X., Liu, Y., Zhan, S., Wu, Z., et al 2022. Tea polyphenols as prospective natural attenuators of brain aging. Nutrients 14(15): 3012. 10.3390/nu14153012

Hossain, M.N., Sarker, U., Raihan, M.S., Al-Huqail, A.A., Siddiqui, M.H. and Oba, S., 2022. Influence of salinity stress on color parameters, leaf pigmentation, polyphenol and flavonoid contents, and antioxidant activity of Amaranthus lividus leafy vegetables. Molecules 27(6): 1821. 10.3390/molecules27061821

Huertas-Alonso, A.J., Gavahian, M., González-Serrano, D.J., Hadidi, M., Salgado-Ramos, M., Sánchez-Verdú, M.P. et al., 2021. Valorization of wastewater from table olives: NMR identification of antioxidant phenolic fraction and microwave single-phase reaction of sugary fraction. Antioxidants 10(11): 1652. 10.3390/antiox10111652

Jahromi, S.G., 2019. Extraction techniques of phenolic compounds from plants. Plant Physiological Aspects of Phenolic Compounds. IntechOpen 1–18. 10.5772/intechopen.84705

Jardim-Botelho, A., de Oliveira, L.C.L., Motta-Franco, J. and Solé, D., 2022. Nutritional management of immediate hypersensitivity to legumes in vegetarians. Allergologia et Immunopathologia 50(SP1): 37–45. 10.15586/aei.v50iSP1.554

Johnson, R.L. and Mitchell, A.E., 2018. Reducing phenolics related to bitterness in table olives. Journal of Food Quality 2018: 1–12. 10.1155/2018/3193185

Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., Pérez-Lebeña, E., 2021. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences 22(9): 4642. 10.3390/ijms22094642

Karthik, K., Bharath Rathna Kumar P., Venu Priya R., Sunil Kumar K., Ranjith Singh, B.R., 2013. Evaluation of anti-inflammatory activity of canthium parviflorum by in-vitro method. Indian Journal of Research in Pharmacy and Biotechnology 1(5): 729-731.

Laaboudi, W., Ghanam, J., Aissam, H., Merzouki, M. and Benlemlih, M., 2016. Anti-inflammatory and analgesic activities of olive tree extract. International Journal of Pharmacy and Pharmaceutical Sciences 8(7): 414–419. https://innovareacademics.in/journals/index.php/ijpps/article/view/12109

Liu, L., Yu, N., Leng, W., Lu, Y., Xia, X., Yuan, H., 2022. 6-Gingerol, a functional polyphenol of ginger, reduces pulmonary fibrosis by activating Sirtuin1. Allergologia et Immunopathologia 50(2): 104–114. 10.15586/aei.v50i2.533

Maalej, A., Dahmen-Ben Moussa, I., Karray, F., Chamkha, M. and Sayadi, S., 2022. Olive oil by-product’s contribution to the recovery of phenolic compounds from microalgal biomass: biochemical characterization, anti-melanogenesis potential, and neuroprotective effect. Biomass Conversion and Biorefinery, 1–13. 10.1007/s13399-022-02640-9

MARDF. 2017. Ministry of Agriculture and Rural Development and Fisheries, series B (crop production). (Algiers, Algeria: MARDF).

Medina, M.S., Plaza, C.M., Stowe, C.D., Robinson, E.T., DeLander, G., Beck, D.E., Melchert RB, Supernaw RB, Roche VF, Gleason BL, Strong MN, Bain A, Meyer GE, Dong BJ, Rochon J, Johnston P., 2013. Center for the Advancement of Pharmacy Education 2013 educational outcomes. American Journal of Pharmaceutical Education 77(8):. 10.5688/ajpe778162

Menezes, R., Foito, A., Jardim, C., Costa, I., Garcia, G., Rosado-Ramos, R., ... & Santos, C.N., 2020. Bioprospection of natural sources of polyphenols with therapeutic potential for redox-related diseases. Antioxidants 9(9): 789. 10.3390/antiox9090789

Mettouchi, S., Sacchi, R., Moussa, Z.O., Paduano, A., Savarese, M. and Tamendjari, A., 2016. Effect of Spanish-style processing on the phenolic compounds and antioxidant activity of Algerian green table olives. Grasas y Aceites 67(1): e114–e114. 10.3989/gya.0378151

Murgia, V., Ciprandi, G., Votto, M., De Filippo, M., Tosca, M.A. and Marseglia, G.L., 2021. Natural remedies for acute post-viral cough in children. Allergologia et Immunopathologia 49(3): 173–184. 10.15586/aei.v49i3.71

Pan, S., Lee, E., Lee, Y.J., Jin, M., Lee, E., 2021. Suppressive effect of tamarixetin, isolated from Inula japonica, on degranulation and eicosanoid production in bone marrow-derived mast cells. Allergologia et Immunopathologia 49(3): 42–49. 10.15586/aei.v49i3.75

Prabhu, S., Molath, A., Choksi, H., Kumar, S. and Mehra, R., 2021. Classifications of polyphenols and their potential application in human health and diseases. International Journal of Physiology, Nutrition and Physical Education 6(1): 293–301. 10.22271/journalofsport.2021.v6.i1e.2236

Rekik, O., Mansour, A. ben., Da Silva, M.D.R.G. and Bouaziz, M., 2021. Identification of trace volatile and phenolic compounds in olive oils with trees growing in different area conditions: using SPME/GC–MS. Food Analytical Methods. 14(12), 2494-2510. 10.1007/s12161-021-02061-w

Remigante, A., Spinelli, S., Straface, E., Gambardella, L., Caruso, D., Falliti, G. et al., 2022. Antioxidant activity of quercetin in a H2O2-induced oxidative stress model in red blood cells: functional role of band 3 protein. International Journal of Molecular Sciences 23(19): 10991. 10.3390/ijms231910991

Saleh, E., Morshdy, A.E., El-Manakhly, E., Al-Rashed, S.F., Hetta, H., Jeandet, P., ... & Ali, E., 2020. Effects of olive leaf extracts as natural preservative on retailed poultry meat quality. Foods 9(8): 1017. 10.3390/foods9081017

Soufi, O., Romero, C., Motilva, M.J., Gaya, X.B. & Louaileche, H., 2016. Effect of dry salting on flavonoid profile and antioxidant capacity of Algerian olive cultivars. Grasas y Aceites 67(2): e132.

Xu, C., Song, L., Zhang, W., Zou, R., and Zhu, M., 2022. 6’-O-galloylpaeoniflorin alleviates inflammation and oxidative stress in pediatric pneumonia through activating Nrf2 activation. Allergologia et Immunopathologia 50(4): 71–76. 10.15586/aei.v50i4.639

Yakhlef, W., Arhab, R., Romero, C., Brenes, M., de Castro, A. and Medina, E., 2018. Phenolic composition and antimicrobial activity of Algerian olive products and by-products. Food Science and Technology (LWT) 93, 323–328. 10.1016/j.lwt.2018.03.044

Yan, S., Ai, S., Huang, L., Qiu, C., Zhang, F., He, N. et al., 2022. Systematic review and meta-analysis of probiotics in the treatment of allergic rhinitis. Allergologia et Immunopathologia 50(3): 24–37. 10.15586/aei.v50i3.507