Extraction, isolation, identification, and bioactivity of polysaccharides from Antrodia cinnamomea

Main Article Content

Jia-ning Dai
Bo-ling Liu
Dan Ji
Lei Yuan
Wen-yuan Zhou
Hua-xiang Li


Antrodia cinnamomea, bioactivity, composition, extraction, isolation, polysaccharides


Antrodia (A) cinnamomea is a precious edible and medicinal mushroom and has attracted attention because of its rare resources and unique bioactivities. The bioactive compounds from the fruit body, mycelium, and fermentation broth of A. cinnamomea include triterpenoids, polysaccharides, antroquinonols, benzenoids, and succinic and maleic acid derivatives. Among these, polysaccharides are very important and are high-content bioactive compounds. The A. cinnamomea polysaccharides (APSs) present numerous biological activities, such as antiviral, anticancer, anti-inflammatory, antivascular, immunoregulation, antioxidant, and nerve protection. However, only few studies have focused only on APSs so far. Therefore, the cultivation methods, extraction, isolation, composition, structure, biological activity, and application of APSs are summarized in this review to provide a comprehensive and convenient reference for further research and development on APSs.

Abstract 1163 | PDF Downloads 424 HTML Downloads 5 XML Downloads 17


Andres, B.P., Lina M, L.G. and Gonzalo, T.O., 2020. Volatilome study of the feijoa fruit [Acca sellowiana (O. Berg) Burret] with headspace solid phase microextraction and gas chromatography coupled with massspectrometry. Food Chemistry 328: 127109. 10.1016/j.foodchem.2020.127109

Banchereau, J. and Steinman, R.M., 1998. Dendritic cells and the control of immunity. Nature 392: 245–252. 10.1038/32588

Benzi, G. and Moretti, A., 1995. Age-and peroxidative stress--related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system. Free Radical Biology and Medicine 19: 77–101. 10.1016/0891-5849(94)00244-E

Brunt, K., Sanders, P., Nota, V.E. and Soest, J.V., 2021. Results multi-laboratory trial ISO/CD 22184-IDF/WD 244: milk and milk products–determination of the sugar contents–high--performance anion exchange chromatography method with pulsed amperometric detection. Journal of AOAC International 104: 732–756. 10.1093/jaocint/qsaa092

Cao, L.P., Zhang, Q., Miao, R.Y., Lin, J.B., Feng, R.C., Ni, Y.Q., Li, W.S., Yang, D.L. and Zhao, X., 2023. Application of omics technology in the research on edible fungi. Current Research in Food Science 6: 100430. 10.1016/j.crfs.2022.100430

Chang, C.C., Lu, Y.C., Wang, C.C., Ko, T.L., Chen, J.R., Wang, W., Chen, Y.L., Wang, Y.W., Chang, T.H. and Hsu, H.F., 2020. Antrodia cinnamomea extraction waste supplementation promotes thermal stress tolerance and tissue regeneration ability of zebrafish. Molecules 25: 4213. 10.3390/molecules25184213

Chen, S.N., Chang, C.S., Chen, S. and Soni, M., 2018. Subchronic toxicity and genotoxicity studies of Antrodia mushroomβ--glucan preparation. Regulatory Toxicology and Pharmacology 92: 429–438. 10.1016/j.yrtph.2017.12.022

Chen, Y.J., Cheng, P.C., Lin, C.N., Liao, H.F., Chen, Y.Y., Chen, C.C. and Li, K.W., 2008. Polysaccharides from Antrodia camphorata mycelia extracts possess immunomodulatory activity and inhibits infection of Schistosoma mansoni. International Immunopharmacology 8: 458–467. 10.1016/j.intimp.2007.11.008

Chen, C.C., Liu, Y.W., Ker, Y.B., Wu, Y.Y., Lai, E.Y., Chyau, C.C., Hseu, T.H. and Peng, R.Y., 2007. Chemical characterization and anti-inflammatory effect of polysaccharides fractionated from submerge-cultured Antrodia camphorata mycelia. Journal of Agricultural and Food Chemistry 55: 5007–5012. 10.1021/jf063484c

Chen, S.C., Lu, M.K., Cheng, J.J. and Wang, D.L., 2005.Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiology Letters 249: 247–254. 10.1016/j.femsle.2005.06.033

Chen, Q.L., Tang, H.L., Zha, Z.Q., Yin, H.P., Wang, Y., Wang, Y.F., Li, H.T. and Yue, L., 2017. β-D-glucan from Antrodia camphorata ameliorates LPS-induced inflammation and ROS production in human hepatocytes. International Journal of Biological Macromolecules 104: 768777. 10.1016/j.ijbiomac.2017.05.191

Cheng, J.J., Chao, C.H., Chang, P.C. and Lu, M.K., 2016. Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloid 53: 37–45. 10.1016/j.foodhyd.2014.09.035

Cheng, J.J., Chao, C.H. and Lu, M.K., 2018. Large-scale preparation of sulfated polysaccharides with anti-angionenic and anti-inflammatory properties from Antrodia cinnamomia. International Journal of Biological Macromolecules 11: 1198–1205. 10.1016/j.ijbiomac.2018.03.056

Cheng, J.J., Huang, N.K., Chang, T.T., Wang, D.L. and Lu, M.K., 2005. Study for anti-angiogenic activities of polysaccharides isolated from Antrodia cinnamomea in endothelial cells. Life Science. 76: 3029–3042. 10.1016/j.lfs.2004.11.023

Cheng, J.J., Huang, N.K., Lur, H.S., Kuo, C.I. and Lu, M.K., 2009. Characterization and biological functions of sulfated polysaccharides from sulfated-salt treatment of Antrodia cinnamomea. Process Biochemistry 44: 453–459. 10.1016/j.procbio.2008.12.012

Chen, S.C., Lu, M.K., Cheng, J.J. and Wang, D.L., 2005. Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiology Letters 249: 247–254. 10.1016/j.femsle.2005.06.033

Cheng, J.J., Lu, M.K., Lin, C.Y. and Chang, C.C., 2011. Characterization and functional elucidation of a fucosylated 1,6-α-D-mannogalactan polysaccharide from Antrodia cinnamomea. Carbohydrate Polymers 83: 545–553. 10.1016/j.carbpol.2010.08.016

Chiu, C.H., Peng, C.C., Ker, Y.B., Chen, C.C., Lee, A., Chang, W.L., Chyau, C.C. and Peng, R.Y., 2013. Physicochemical characteristics and anti-inflammatory activities of antrodan, a novel glycoprotein isolated from Antrodia cinnamomea mycelia. Molecules 19: 22–40. 10.3390/molecules19010022

Cuvillier, O., 2017. The therapeutic potential of HIF-2 antagonism in renal cell carcinoma. Translational Andrology and Urology 6: 131–133. 10.21037/tau.2017.01.12

Duffield, J.S., Forbes, S.J., Constandinou, C.M., Clay, S., Partolina, M. and Vuthoori, S., 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. Journal of Clinical Investigation 115: 56–65. 10.1172/JCI200522675

Fa, K.N., Yang, C.M., Chen, P.C., Lee, Y.Y., Chyau, C.C. and Hu, M.L., 2015. Anti-metastatic effects of antrodan, the Antrodia cinnamomea mycelia glycoprotein, in lung carcinoma cells. International Journal of Biological Macromolecules 74: 476–482. 10.1016/j.ijbiomac.2015.01.004

Fan, J.H., Lai, K.S., Huang, Y.Y., Chen, H.Y., Xiong, L.Q., Guo, H.K., Yang, Q.Q. and Zhang, B.B., 2023. Efficient production of Antrodin C by microparticle-enhanced cultivation of medicinal mushroom Antrodia cinnamomea. Journal of Bioscience and Bioengineering 135: 232–237. 10.1016/j.jbiosc.2022.12.013

Ferrara, N., 2000. VEGF: an update on biological and therapeutic aspects. Current Opinion in Biotechnology 11: 617–624. 10.1016/S0958-1669(00)00153-1

Finkel, T. and Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247. 10.1038/35041687

Geng, Y.Y., Zhang, S.X., Yang, N.X. and Qin, L.K., 2022. Whole-genome sequencing and comparative genomics analysis of the wild edible mushroom (Gomphus purpuraceus) provide insights into its potential food application and artificial domestication. Genes 13: 1628. 10.3390/genes13091628

Gress, R.E. and Deeks, S.G., 2009. Reduced thymus activity and infection prematurely age the immune system. Journal of Clinical Investigation 119: 2884–2887. 10.1172/JCI40855

Han, C.Y., Guo, L., Yang, Y., Li, W.Y., Sheng, Y.J., Wang, J., Guan, Q.B. and Zhang, X.L., 2019. Study on Antrodia camphorata polysaccharide in alleviating the neuroethology of PD mice by decreasing the expression of NLRP3 inflammasome. Phytotherapy Research 33: 2288–2297. 10.1002/ptr.6388

Han, H.F., Nakamura, N., Zuo, F., Hirakawa, A., Yokozawa, T. and Hattori, M., 2006. Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide-induced hepatic injury in mice. Chemical and Pharmaceutical Bulletin 54: 496–500. 10.1248/cpb.54.496

Han, C.Y., Shen, H.P., Yang, Y., Sheng, Y.J., Wang, J., Li, W.Y., Zhou, X.H., Guo, L., Zhai, L.P. and Guan, Q.,B 2020. Antrodia camphorata polysaccharide resists 6-OHDA-induced dopaminergic neuronal damage by inhibiting ROS-NLRP3 activation. Brain Behavour 10: e01824. 10.1002/brb3.1824

He, R.J., Wu, K.X., Zhang, A.Q., Xie, Z.F. and Sun, P.L., 2019. Mechanochemical-assisted extraction and pharmacological study of triterpenoids from Antrodia camphorata. Applied Sciences 9: 4281. 10.3390/app9204281

Hirsch, E.C., Vyas, S. and Hunot, S., 2012. Neuroinflammation in Parkinson’s disease. Parkinsonism & Related Disorders 18: S210–S212. 10.1016/S1353-8020(11)70065-7

Ho, Y.C., Lin, M.T., Duan, K.J. and Chen, Y.S., 2008. The hepatoprotective activity against ethanol-induced cytotoxicity by aqueous extract of Antrodia cinnamomea. Journal of the Chinese Institute of Chemical Engineers 39: 441–447. 10.1016/j.jcice.2008.03.008

Hseu, Y.C., Chang, W.C., Hseu, Y.T., Lee, C.Y., Yech, Y.J., Chen, P.C., Chen, J.Y. and Yang, H.L., 2002. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sciences 71: 469–482. 10.1016/S0024-3205(02)01686-7

Hsieh, T.C., Wu, P., Park, S. and Wu, J.M., 2006. Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I’m-Yunity (PSP). BMC Complementary Medicine and Therapies 6: 30. 10.1186/1472-6882-6-30

Huang, Y.C., Tsay, H.J., Lu, M.K., Lin, C.H., Yeh, C.W., Liu, H.K. and Shiao, Y.J., 2017. Astragalus membranaceus polysaccharides ameliorates obesity, hepatic steatosis, neuroinflammation and cognition impairment without affecting amyloid deposition in metabolically stressed APPswe/PS1dE9 mice. International Journal of Molecular Sciences 18: 2746. 10.3390/ijms18122746

Iancu, R., Mohapel, P., Brundin, P. and Paul, G., 2005. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behavioural Brain Research 162: 1–10. 10.1016/j.bbr.2005.02.023

Kawai, S., Yonetani, M., Nakamura, H. and Okada, Y., 1989. Effects of deprivation of oxygen and glucose on the neural activity and the level of high energy phosphates in the hippocampal slices of immature and adult rat. Developmental Brain Research 48: 11–18. 10.1016/0165-3806(89)90089-8

Kong, Z.L., Chang, J.S. and Chang, K.L.B., 2013. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan–silica nanoparticles strongly depends on the metabolic activity type of the cell line. Journal of Nanoparticle Research 15: 1945. 10.1007/s11051-013-1945-2

Kwamla, A.R. and Thomas, S., 2022. Detection of mycolactone by thin layer chromatography. Methods in Molecular Biology 2387: 131–149. 10.1007/978-1-0716-1779-3_14

Lavi, I., Friesem, D., Geresh, S., Hadar, Y. and Schwartz, B., 2006. An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and pro-apoptotic effects on HT-29 colon cancer cells. Cancer Letters 244: 61–70. 10.1016/j.canlet.2005.12.007

Lee, T.H., Chen, C.C., Chen, J.J., Liao, H.F., Chang, H.S., Sung, P.J., Tseng, M.H., Wang, S.Y., Ko, H.H. and Kuo, Y.H., 2014. New and cytotoxic components from Antrodia camphorata. Molecules 19: 21378–21385. 10.3390/molecules191221378

Lee, I.H., Huang, R.L., Chen, C.T., Chen, H.C., Hsu, W.C. and Lu, M.K., 2002.Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiology Letters 209: 63-67.10.1111/j.1574-6968.2002.tb11110.x

Lee, J.C., Lee, K.Y., Son, Y.O., Choi, K.C., Kim, J., Truong, T.T. and Jang, Y.S., 2005. Plant-originated glycoprotein, G-120, inhibits the growth of MCF-7 cells and induces their apoptosis. Food and Chemical Toxicology 43: 961-968.10.1016/j.fct.2005.02.002

Li, H.X., Dai, J.N., Shi, Y., Zhu, X.Y., Jia, L.Q. and Yang, Z.Q., 2023. Molecular regulatory mechanism of the iron-ion-promoted asexual sporulation of Antrodia cinnamomea in submerged fermentation revealed by comparative transcriptomics. Journal of Fungi 9: 235. 10.3390/jof9020235

Li, H.X., Ji, D., Luo, Z.S., Ren, Y.L., Lu, Z.M., Yang, Z.Q. and Xu. Z.H., 2022a. Comparative transcriptomic analyses reveal the regulatory mechanism of nutrient limitation-induced sporulation of Antrodia cinnamomea in submerged fermentation. Foods 11: 2715. 10.3390/foods11172715

Li, H.X., Lu, Z.M., Geng, Y., Gong, J.S., Zhang, X.J., Shi, J.S., Xu, Z.H. and Ma, Y.H., 2015. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation. Bioresource Technology 194: 334–343. 10.1016/j.biortech.2015.06.144

Li, H.X., Lu, Z.M., Zhu, Q., Gong, J.S., Geng, Y., Shi, J.S., Xu, Z.H. and Ma, Y.H., 2017. Comparative transcriptomic and proteomic analyses reveal a fluG-mediated signaling pathway relating to asexual sporulation of Antrodia camphorata. Proteomics 17: 1700256. 10.1002/pmic.201700256

Li, H.X., Wang, J.J., Lu, C.L., Gao, Y.J., Gao, L. and Yang, Z.Q., 2022b. Review of bioactivity, isolation, and identification of active compounds from Antrodia cinnamomea. Bioengineering (Basel) 9: 494. 10.3390/bioengineering9100494

Lin, E.S. and Chen, Y.H., 2007. Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnamomea using complex media. Bioresource Technology 98: 2511–2517. 10.1016/j.biortech.2006.09.008

Lin, Z.H., Lu, M.K., Lo, H.C., Chang, C.C., Tseng, A.J., Chao, C.H. and Lin, T.Y., 2023. ZnF3, a sulfated polysaccharide from Antrodia cinnamomea inhibits lung cancer cells via induction of apoptosis and activation of M1-like macrophage-induced cell death. International Journal of Biological Macromolecules 238: 124144. 10.1016/j.ijbiomac.2023.124144

Lin, T.Y., Lu, M.K., Tseng, A.J. and Chao, C.H., 2020. Effects of sterol-type elicitors on biochemical characterization of polysaccharides from Antrodia cinnamomea. International Journal of Biological Macromolecules 162: 1476–1483. 10.1016/j.ijbiomac.2020.07.201

Lin, C.C., Pan, I.H., Li, Y.R., Pan, Y.G., Lin, M.K., Lu, Y.H., Wu, H.C. and Chu, C.L., 2015. The adjuvant effects of high--molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. Plos One 10: e0116191. 10.1371/journal.pone.0116191

Lin, E.S. and Sung, S.C., 2006. Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. International Journal of Food Microbiology 108: 182–187. 10.1016/j.ijfoodmicro.2005.11.010

Lin, T.Y., Tseng, A.J., Qiu, W.L., Chao, C.H. and Lu, M.K., 2019. A sulfated glucan from Antrodia cinnamomea reduces slug expression through regulation of TGFbeta/AKT/GSK3beta axis in lung cancer. Carbohydrate Polymers 210: 175–184. 10.1016/j.carbpol.2019.01.078

Lin, E.S., Yang, C.T., Chou, H.J. and Chang, T.T., 2010. Screening of antioxidant activities by the edible basidiomycete Antrodia Cinnamomea strains in submerged culture. Journal of Food Biochemistry 34: 1141–1156. 10.1111/j.1745-4514.2010.00355.x

Liu, Y.Q., Ding, Y.Q., Ye, M., Zhu, T., Tian, D.B. and Ding, K., 2017. A novel heterogalactan from Antrodia camphorata and anti-angiogenic activity of its sulfated derivative. Polymers 9: 228. 10.3390/polym9060228

Liu, J.J., Huang, T.S., Hsu, M.L., Chen, C.C., Lin, W.S., Lu, F.J. and Chang, W.H., 2004. Antitumor effects of the partially purified polysaccharides from Antrodia camphorata and the mechanism of its action. Toxicol. Appl. Pharm. 201: 186–193. 10.1016/j.taap.2004.05.016

Liu, K.J., Leu, S.J., Su, C.H., Chiang, B.L., Chen, Y.L. and Lee, Y.L., 2010. Administration of polysaccharides from Antrodia camphorata modulates dendritic cell function and alleviates allergen-induced T helper type 2 responses in a mouse model of asthma. Immunology 129: 351–362. 10.1111/j.1365-2567.2009.03175.x

Liu, F., Ooi, V.E. and Chang, S.T., 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences 60: 763–771. 10.1016/s0024-3205(97)00004-0

Liu, Y.G., Yang, A.H., Qu, Y.D., Wang, Z.Q., Zhang, Y.Q., Liu, Y., Wang, N., Teng, L.R. and Wang, D., 2018. Ameliorative effects of Antrodia cinnamomea polysaccharides against cyclophosphamide-induced immunosuppression related to Nrf2/HO-1 signaling in BALB/c mice. International Journal of Biological Macromolecules 116: 8–15. 10.1016/j.ijbiomac.2018.04.178

Liu, X.F., Yu, S.Z., Zhang, Y., Zhang, W., Zhong, H., Lu, X.Q. and Guan, R.F., 2023. A review on the protective effect of active components in Antrodia camphorata against alcoholic liver injury. Journal of Ethnopharmacology 300: 115740. 10.1016/j.jep.2022.115740

Lu, M.K., Chao, C.H., Chang, T.Y., Cheng, M.C., Hsu, Y.C. and Chang, C.C., 2023. A branched 2-O sulfated 1,3-/1,4-galactoglucan from Antrodia cinnamomea exhibits moderate antiproliferative and anti-inflammatory activities. International Journal of Biological Macromolecules 241: 124559. 10.1016/j.ijbiomac.2023.124559

Lu, M.K., Chao, C.H., Hsu, Y.C. and Chang, C.C., 2021. Structural sequencing and anti-inflammatory, anti-lung cancer activities of 1,4-α/β-sulfomalonoglucan in Antrodia cinnamomea. International Journal of Biological Macromolecules 170: 307–316. 10.1016/j.ijbiomac.2020.12.135

Lu, M.J., Fan, W., Wang, W., Chen, T.C., Tang, Y.C., Chu, F.H., Chang, T.T., Wang, S.Y., Meng, Y., Chen, Y.H., Lin, Z.S., Yang, K.J., Chen, S.M., Teng, Y.C., Lin, Y.L., Shaw, J.F., Wang, T.F. and Li, W.H., 2014a. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proceedings of the National Academy of Sciences 44: E4743–E4752. 10.1073/pnas.1417570111

Lu, Z.M., He, Z., Li, H.X., Gong, J.S., Geng, Y., Xu, H.Y., Shi, J.S. and Xu, Z.H., 2014b. Modified arthroconidial inoculation method for the efficient fermentation of Antrodia camphorata ATCC 200183. Biochemical Engineering Journal 87: 41–49. 10.1016/j.bej.2014.03.020

Lu, M.K., Lee, M.H., Chao, C.H. and Hsu, Y.C., 2020. Physiochemical changes and mechanisms of anti-inflammation effect of sulfated polysaccharides from ammonium sulfate feeding of Antrodia cinnamomea. International Journal of Biological Macromolecules 148: 715–721. 10.1016/j.ijbiomac.2020.01.110

Lu, C.L., Lee, B.H., Ren, Y.L., Ji, D., Rao, S.Q. and Li, H.X., 2022a. Effects of exopolysaccharides from Antrodia cinnamomea on inflammation and intestinal microbiota disturbance induced by antibiotics in mice. Food Biosciences 50: 102116. 10.1016/j.fbio.2022.102116

Lu, Z.M., Lei, J.Y., Xu, H.Y., Shi, J.S. and Xu, Z.H., 2011. Optimization of fermentation medium for triterpenoid production from Antrodia camphorata ATCC 200183 using artificial intelligence-based techniques. Applied Microbiology and Biotechnology 92: 371–379. 10.1007/s00253-011-3544-4

Lu, C.L., Li, H.X., Zhu, X.Y., Luo, Z.S., Rao, S.Q. and Yang, Z.Q., 2022b. Regulatory effect of intracellular polysaccharides from Antrodia cinnamomea on the intestinal microbiota of mice with antibiotic-associated diarrhea. Quality Assurance and Safety of Crops & Foods 14: 124–134. 10.15586/qas.v14i3.1073

Lu, M.K., Lin, T.Y. and Chang, C.C., 2018. Chemical identification of a sulfated glucan from Antrodia cinnamomea and its anti-cancer functions via inhibition of EGFR and mTOR activity. Carbohydrate Polymers 202: 536–544. 10.1016/j.carbpol.2018.09.009

Lu, M.K., Lin, T.Y., Chao, C.H., Hu, C.H. and Hsu, H.Y., 2017a. Molecular mechanism of Antrodia cinnamomea sulfated polysaccharide on the suppression of lung cancer cell growth and migration via induction of transforming growth factor β receptor degradation. International Journal of Biological Macromolecules 95: 1144–1152. 10.1016/j.ijbiomac.2016.11.004

Lu, M.K., Lin, T.Y., Hu, C.H., Chao, C.H., Chang, C.C. and Hsu, H.Y., 2017b. Characterization of a sulfated galactoglucan from Antrodia cinnamomea and its anticancer mechanism via TGFbeta/FAK/Slug axis suppression. Carbohydrate Polymers 167: 29–39. 10.1016/j.carbpol.2019.01.078

Matsuzawa, A., Saegusa, K., Noguchi, T., Sadamitsu, C., Nishitoh, H. and Nagai, S., 2005. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunology 6: 587–592. 10.1038/ni1200

McCranie, E.K. and Bachmann, B.O., 2014. Bioactive oligosaccharide natural products. Natural Product Reports 31: 1026–1042. 10.1039/c3np70128j

Mendes, N.S., Pereira, S.M.F., Arantes, M.B.S., Glória, L.L., Nunes, C.R., Passos, M.D., Vieira, I.J.C., Rodrigues, R. and Oliveira, D.B., 2020. Bioanalytical method validation for the quantification of the chlorogenic acid in Capsicum baccatum through high performance liquid chromatography (HPLC-DAD). Food Chemistry 325: 126929. 10.1016/j.foodchem.2020.126929

Meng, L.M., Pai, M.H., Liu, J.J. and Yeh, S.L., 2012. Polysaccharides from extracts of Antrodia camphorata mycelia and fruiting bodies modulate inflammatory mediator expression in mice with polymicrobial sepsis. Nutrition 28: 942–949. 10.1016/j.nut.2012.01.006

Miao, M.S., Cheng, B.L., Guo, L. and Shi, J.J., 2015. Effects of Fuzheng Paidu tablet on peripheral blood T lymphocytes, intestinal mucosa T lymphocytes, and immune organs in cyclophosphamide-induced immunosuppressed mice. Human Vaccines & Immunotherapeutics 11: 2659–2663. 10.1080/21645515.2015.1082694

Peng, C.C., Lin, Y.T., Chen, K.C., Chyau, C.C. and Peng, R.Y., 2015. Antrodan, a β-glucan obtained from Antrodia cinnamomea mycelia, is beneficial to benign prostate hyperplasia. Food & Function 6: 635–645. 10.1039/c4fo00472h

Perera, N., Yang, F.L., Chang, C.M., Lu, Y.T., Zhan, S.H., Tsai, Y.T., Hsieh, J.F., Li, L.H., Hua, K.F. and Wu, S.H., 2017. Galactomannan from Antrodia cinnamomeaenhances the phagocytic activity of macrophages. Organic Letters 19: 3486–3489. 10.1021/acs.orglett.7b01468

Perera, N., Yang, F.L., Lu, Y.T., Li, L.H., Hua, K.F. and Wu, S.H., 2018. Antrodia cinnamomea galactomannan elicits immuno-stimulatory activity through toll-like receptor 4. International Journal of Biology Sciences 14: 1378–1388. 10.7150/ijbs.24564

Pulendran, B., Banchereau, J., Maraskovsky, E. and Maliszewski, C., 2001. Modulating the immune response with dendritic cells and their growth factors. Trends in Immunology 22: 41–47. 10.1016/S1471-4906(00)01794-4

Ruan, S.L., Yang, Y. and Li, W.Y., 2022. Antrodia Camphorata polysaccharide activates autophagy and regulates NLRP3 degradation to improve liver injury-related inflammatory response. Aging 14: 8970–8981. 10.18632/aging.204330

Sheu, F., Chien, P.J., Hsieh, K.Y., Chin, K.L., Huang, W.T., Tsao, C.Y., Chen, Y.F., Cheng, H.C. and Chang, H.H., 2009. Purification, cloning, and functional characterization of a novel immunomodulatory protein from Antrodia camphorata (bitter mushroom) that exhibits TLR2-dependent NF-kappaB activation and M1 polarization within murine macrophages. Journal of Agricultural and Food Chemistry 57: 4130–4141. 10.1021/jf900469a

Shi, L., 2016. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. International Journal of Biological Macromolecules 92: 37–38. 10.1016/j.ijbiomac.2016.06.100

Shih, I.L., Pan, K. and Hsieh, C.Y., 2006. Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Process Biochemistry 41: 1129–1135. 10.1016/j.procbio.2005.12.005

Shu, C.H. and Lung, M.Y., 2004. Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochemistry 39: 931–937. 10.1016/S0032-9592(03)00220-6

Siddiqui, I.A., Adhami, V.M., Chamcheu, J.C. and Mukhtar, H., 2012. Impact of nanotechnology in cancer: emphasis on nanochemoprevention. International Journal of Nanomedicine 7: 591–605. 10.2147/IJN.S26026

Singh, K., Bharose, R., Verma, S.K. and Singh, V.K., 2013. Potential of powdered activated mustard cake for decolorising raw sugar. Journal of the Science of Food and Agriculture 93: 157–165. 10.1002/jsfa.5744

Song, T.Y. and Yen, G.C., 2002. Antioxidant properties of Antrodia camphorata in submerged culture. J. Agr. Food. Chem. 50: 3322–3327. 10.1021/jf011671z

Su, C.H., Hsieh, Y.C., Chng, J.Y., Lai, M.N. and Ng, L.T., 2023. Metabolomic profiling of different Antrodia cinnamomea phenotypes. Journal of Fungi 9: 97. 10.3390/jof9010097

Su, C.H., Lai, M.N., Lin, C.C. and Ng, L.T., 2016. Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Applied Microbiology and Biotechnology 100: 4385–4393. 10.1007/s00253-015-7260-3

Tang, H.L., Nie, W.B., Xiao, J.N., Zha, Z.Q., Chen, Q.L. and Yin, H.P., 2019. Structural characterization and anti-inflammatory effect in hepatocytes of a galactoglucan from Antrodia camphorata mycelium. RSC Advances 9: 7664–7672. 10.1039/c8ra10347j

Tsai, M.C., Song, T.Y., Shih, P.H. and Yen, G.C., 2007. Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chemistry 104: 1115–1122. 10.1016/j.foodchem.2007.01.018

Wang, J.L., Bao, A.J., Meng, X.H., Guo, H.Y., Zhang, Y.D. and Zhao, Y.L., 2018. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro. Carbohydrate Polymers 184: 366–375. 10.1016/j.carbpol.2017.12.065

Wang, L.C., Wang, S.E., Wang, J.J., Tsai, T.Y., Lin, C.H., Pan, T.M. and Lee, C.L., 2012. In vitro and in vivo comparisons of the effects of the fruiting body and mycelium of Antrodia camphorata against amyloid β-protein-induced neurotoxicity and memory impairment. Applied Microbiology and Biotechnology 94: 1505–1519. 10.1007/s00253-012-3941-3

Wang, W.J., Wu, Y.S., Chen, S., Liu, C.F. and Chen, S.N., 2015. Mushroom β-glucan may immunomodulate the tumor--associated macrophages in the lewis lung carcinoma. BioMed Research International 2015: 604385. 10.1155/2015/604385

Wang, X.M., Zhang, Z.S., Yao, Q., Zhao, M.X. and Qi, H.M., 2013. Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydrate Polymers 96: 371–375. 10.1016/j.carbpol.2013.04.029

Wang, Z.Q., Zhu, C.X., Dai, A.R., Chen, L., You, C.P. and Zhang, B.B., 2021. Chemical characterization and antioxidant properties of cell wall polysaccharides from Antrodia cinnamomea mycelia. Food Bioscience 41: 100932. 10.1016/j.fbio.2021.100932

Wu, Y.Y., Chen, C.C., Chyau, C.C., Chung, S.Y. and Liu, Y.W., 2007. Modulation of inflammation-related genes of polysaccharides fractionated from mycelia of medicinal basidiomycete Antrodia camphorata. Acta Pharmacologica Sinica 28: 258–267. 10.1111/j.1745-7254.2007.00500.x

Xia, Y.J., Meng, P., Liu, S.D., Tan, Z.M., Yang, X. and Liang, L.H., 2022. Structural and potential functional properties of alkali-extracted dietary fiber from Antrodia camphorata. Frontiers In Microbiology 13: 921164. 10.3389/fmicb.2022.921164

Yang, Y., Han, C.Y., Sheng, Y.J., Wang, J., Li, W.Y., Zhou, X.H. and Ruan, S.L., 2022. Antrodia camphorata polysaccharide improves inflammatory response in liver injury via the ROS/TLR4/NF-kappaB signal. Journal of Cellular and Molecular Medicine 26: 2706–2716. 10.1111/jcmm.17283

Yang, F.C., Ma, T.W. and Chuang, Y.T., 2012. Medium modification to enhance the formation of bioactive metabolites in shake flask cultures of Antrodia cinnamomea by adding citrus peel extract. Bioprocess and Biosystems Engineering 35: 1251–1258. 10.1007/s00449-012-0712-6

Yang, B., Xiao, B. and Sun, T., 2013. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. International Journal of Biological Macromolecules 62: 287–290. 10.1016/j.ijbiomac.2013.09.016

Yang, C.M., Zhou, Y.J., Wang, R.J. and Hu, M.L., 2009. Anti-angiogenic effects and mechanisms of polysaccharides from Antrodia cinnamomea with different molecular weights. Journal of Ethnopharmacology 123: 407–412. 10.1016/j.jep.2009.03.034

Ye, J.L., Zhang, C., Fan, Q.L., Lin, X.J., Wang, Y.B. and Azzam, M., 2022. Antrodia cinnamomea polysaccharide improves liver antioxidant, anti-inflammatory capacity, and cecal flora structure of slow-growing broiler breeds challenged with lipopolysaccharide. Frontiers in Veterinary Science 9: 994782. 10.3389/fvets.2022.994782

Yukawa, H., Ishikawa, S., Kawanishi, T., Tamesada, M. and Tomi, H., 2012. Direct cytotoxicity of Lentinula edodes mycelia extract on human hepatocellular carcinoma cell line. Biological and Pharmaceutical Bulletin 35: 1014–1021. 10.1248/bpb.b110657

Zhang, B.B., Guan, Y.Y., Hu, P.F., Chen, L., Xu, G.R., Liu, L. and Cheng, P.C.K., 2019. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Critical Reviews In Biotechnology 39: 541–554. 10.1080/07388551.2019.1577798

Zhang, Y.T., Wang, Z., Li, D.Y., Zang, W.T., Zhu, H., Wu, P.Y., Mei, Y.X. and Liang, Y.X., 2018. A polysaccharide from Antrodia cinnamomea mycelia exerts antitumor activity through blocking of TOP1/TDP1-mediated DNA repair pathway. International Journal of Biological Macromolecules 120: 1551–1560. 10.1016/j.ijbiomac.2018.09.162

Zhao, J., Cheng, Y.Y., Yang, C.B., Lau, S., Lao, L.X., Shuai, B., Cai, J. and Rong, J.H., 2016. Botanical drug puerarin attenuates 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulating mitochondrial enzyme arginase-2. Molecular Neurobiology 53: 2200–2211. 10.1007/s12035-015-9195-1

Zheng, J.P., Jiao, S.M., Li, Q.Y., Jia, P.Y., Yin, H. and Zhao, X.M., 2017. Antrodia cinnamomea oligosaccharides suppress lipopolysaccharide-induced inflammation through promoting O-GlcNAcylation and repressing p38/Akt phosphorylation. Molecules 23: 51. 10.3390/molecules 23010051

Zou, S.P., Liu, M., Wang, Q.L., Xiong, Y., Niu, K., Zheng, Y.G. and Shen, Y.C., 2014. Preparative separation of echinocandin B from Aspergillus nidulans broth using macroporous resin adsorption chromatography. Journal of Chromatography B. 978: 111–117. 10.1016/j.jchromb.2014.11.028