Lactic acid bacteria: A bio-green preservative against mycotoxins for food safety and shelf-life extension
Main Article Content
Keywords
anti-mycotoxin, food safety, lactic acid bacteria, metabolite interaction, shelf-life
Abstract
Mycotoxins produced from Aspergillus, Penicillium, and Fusarium cause food spoilages during handling and storage, owing to immense economic losses and serious human health concerns including immunosuppression and carcinogenic effects. Furthermore, these species are also known to produce mycotoxins. Aflatoxin B1 (AFB1), zearalenone (ZEA), ochratoxin A (OTA), and deoxynivalenol (DON) are the most commonly occurring mycotoxins. The removal of mycotoxins from the contaminated food using lactic acid bacterias (LABs) has been proposed as a green, inexpensive, safe, and promising mycotoxin decontamination strategy. LABs can control the mycotoxin production following a series of steps, including, adsorption, metabolite interaction, and biodegradation. This article provides systematic review of LABs as bio-green preservative with anti-mycotoxin potential for sustainable food safety. This consolidated review may be of technical importance to understand detoxification mechanisms and potential interaction of compounds originated with mycotoxin degradation for target food before incorporation by the food industry.
References
Adedokun, E.O., Rather, I.A., Bajpai, V.K. and Park, Y.H., 2016.Biocontrol efficacy of Lactobacillus fermentum YML014 against food spoilage moulds using the tomato puree model. Frontiers in Life Science 9: 64–68. 10.1080/21553769.2015.1084951
Adunphatcharaphon, S., Petchkongkaew, A. and Visessanguan, W., 2021. In vitro mechanism assessment of zearalenone removal by plant-derived Lactobacillus plantarum BCC 47723. Toxins 13: 286. 10.3390/toxins13040286
Almeida, F., Rodrigues, M.L. and Coelho, C., 2019. The still underestimated problem of fungal diseases worldwide. Frontiers in Microbiology 10: 214. 10.3389/fmicb.2019.00214
A-Reda, T.M. and Sahib, R.A., 2021. Isolation and characterization of Patulin Mycotoxin from strawberry fruits. Annals of the Romanian Society for Cell Biology 25: 7394–7405.
Asurmendi, P., Gerbaldo, G., Pascual, L. and Barberis, L., 2020. Lactic acid bacteria with promising AFB1 binding properties as an alternative strategy to mitigate contamination on brewers’ grains. Journal of Environmental Science and Health, Part B 55: 1002–1008. 10.1080/03601234.2020.1807834
Awan, H.S., Ahmad, K.S., Iram, S., Hanif, N.Q. and Gul, M.M., 2021. Analysis and quantification of naturally occurring aflatoxin B1 in dry fruits with subsequent physical and biological detoxification. Natural Product Research 1–5. 10.1080/14786419.2021.1935930
Axel, C., Brosnan, B., Zannini, E., Peyer, L.C., Furey, A., Coffey, A. and Arendt, E.K., 2016. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Applied Microbiology and Biotechnology 100:1701–1711. 10.1007/s00253-015-7051-x
Bahati, P., Zeng, X., Uzizerimana, F., Tsoggerel, A., Awais, M., Qi, G., Cai, R., Yue, T. and Yuan, Y., 2021. Adsorption mechanism of patulin from apple juice by inactivated lactic acid bacteria isolated from kefir grains. Toxins 13: 434. 10.3390/toxins13070434
Barman, S., Ghosh, R., Sengupta, S. and Mandal, N.C., 2017. Longterm storage of post-packaged bread by controlling spoilage pathogens using Lactobacillus fermentum C14 isolated from homemade curd. PloS one 12:e0184020. 10.1371/journal.pone.0184020
Bian, X., Muhammad, Z., Evivie, S.E., Luo, G.W., Xu, M. and Huo, G.C., 2016. Screening of antifungal potentials of Lactobacillus helveticus KLDS 1.8701 against spoilage microorganism and their effects on physicochemical properties and shelf life of fermented soybean milk during preservation. Food Control 66: 183–189. 10.1016/j.foodcont.2016.02.004
Black, B.A., Zannini, E., Curtis, J.M. and Gänzle, M.G., 2013. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Applied and Environmental Microbiology 79: 1866–1873. 10.1128/AEM.03784-12
Broberg, A., Jacobsson, K., Stroöm, K. and Schnuörer, J., 2007. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology 73: 5547–5552. 10.1128/AEM.02939-06
Chaillou, S., Christieans, S., Rivollier, M., Lucquin, I., Champomier-Vergès, M.C. and Zagorec, M., 2014. Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Science 97:332–338. 10.1016/j.meatsci.2013.08.009
Cheong, E.Y., Sandhu, A., Jayabalan, J., Le, T.T.K., Nhiep, N.T., Ho, H.T.M. and Turner, M.S., 2014. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control 46:91–97. 10.1016/j.foodcont.2014.05.011
Chlebicz, A. and Śliżewska, K., 2020. In vitro detoxification of aflatoxin B 1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics and Antimicrobial Proteins 12: 289–301. 10.1007/s12602-018-9512-x
Corassin, C.H., Bovo, F., Rosim, R.E. and Oliveira, C.A.F., 2013. Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control 31: 80–83. 10.1016/j.foodcont.2012.09.033
Cosentino, S., Viale, S., Deplano, M., Fadda, M.E. and Pisano, M.B., 2018. Application of autochthonous Lactobacillus strains as biopreservatives to control fungal spoilage in Caciotta cheese. BioMed Research International 3915615. 10.1155/2018/3915615
Cruz, P.O.D., Matos, C.J.D., Nascimento, Y.M., Tavares, J.F., Souza, E.L.D. and Magalhães, H.I.F., 2021. Efficacy of potentially probiotic fruit-derived Lactobacillus fermentum, L. paracasei and L. plantarum to remove aflatoxin M1 in vitro. Toxins 13(1): 4. 10.3390/toxins13010004
Dallagnol, A.M., Pescuma, M., Rollán, G., Torino, M.I. and de Valdez, G.F., 2015. Optimization of lactic ferment with quinoa flour as bio-preservative alternative for packed bread. Applied Microbiology and Biotechnology 99: 3839–3849. 10.1007/s00253-015-6473-9
Danial, E.N., Lamfon, M.Y., Alghamdi, L.A., Alamri, A.M., Alghamdi, M.S. and Alghamdi, S.A., 2021. Removal of aflatoxin G1 using lactic acid bacteria. Journal of Food Processing and Preservation 45(1): e15090. 10.1111/jfpp.15090
Dawlal, P., Brabet, C., Thantsha, M.S. and Buys, E.M., 2019. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu. Food Additives and Contaminants: Part A 36: 296–307. 10.1080/19440049.2018.1562234
Delavenne, E., Ismail, R., Pawtowski, A., Mounier, J., Barbier, G. and Le Blay, G., 2013. Assessment of lactobacilli strains as yogurt bioprotective cultures. Food Control 30:206–213. 10.1016/j.foodcont.2012.06.043
Delbes-Paus, C., Dorchies, G., Chaabna, Z., Callon, C. and Montel, M.C., 2010. Contribution of hydrogen peroxide to the inhibition of Staphylococcus aureus by Lactococcus garvieae in interaction with raw milk microbial community. Food Microbiology 27:924–932. 10.1016/j.fm.2010.05.031
Delpech, P., Bornes, S., Alaterre, E., Bonnet, M., Gagne, G., Montel, M.C. and Delbès, C., 2015. Staphylococcus aureus transcriptomic response to inhibition by H2O2-producing Lactococcus garvieae. Food Microbiology 51:163–170. 10.1016/j.fm.2015.05.014
Delpech, P., Rifa, E., Ball, G., Nidelet, S., Dubois, E., Gagne, G. and Bornes, S., 2017. New insights into the anti-pathogenic potential of Lactococcus garvieae against Staphylococcus aureus based on RNA sequencing profiling. Frontiers in Microbiology 8:359. 10.3389/fmicb.2017.00359
Deng, Y., Wang, Y., Deng, Q., Sun, L., Wang, R., Wang, X., Liao, J. and Gooneratne, R., 2020. Simultaneous quantification of aflatoxin B1, T-2 toxin, ochratoxin A and deoxynivalenol in dried seafood products by LC-MS/MS. Toxins 12(8): 488. 10.3390/toxins12080488
Diaz, D.G.G., Pizzolitto, R.P., Vázquez, C., Usseglio, V.L., Zunino, M.P., Dambolena, J.S., Zygadlo, J.A. and Merlo, C., 2021. Effects of the volatile organic compounds produced by Enterococcus spp. strains isolated from maize grain silos on Fusarium verticillioides growth and fumonisin B1 production. Journal of Stored Products Research 93: 101825. 10.1016/j.jspr.2021.101825
Dopazo, V., Luz, C., Quiles, J.M., Calpe, J., Romano, R., Mañes, J. and Meca, G., 2021. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. Journal of the Science of Food and Agriculture, 102: 898–907. 10.1002/jsfa.11422
Du, G., Liu, L., Guo, Q., Cui, Y., Chen, H., Yuan, Y., Wang, Z., Gao, Z., Sheng, Q. and Yue, T., 2021. Microbial community diversity associated with Tibetan kefir grains and its detoxification of Ochratoxin A during fermentation. Food Microbiology 99: 103803. 10.1016/j.fm.2021.103803
du Plessis, B., Regnier, T., Combrinck, S., Steenkamp, P. and Meyer, H., 2020. Investigation of fumonisin interaction with maize macrocomponents and its bioaccessibility from porridge using the dynamic tiny-TIM gastrointestinal model. Food Control 113: 107165. 10.1016/j.foodcont.2020.107165
Ezdini, K., Salah-Abbès, J.B., Belgacem, H., Mannai, M. and Abbès, S., 2020. Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 185: 46–56. 10.1016/j.toxicon.2020.06.024
Fall, P.A., Pilet, M.F., Leduc, F., Cardinal, M., Duflos, G., Guérin, C. and Leroi, F., 2012. Sensory and physicochemical evolution of tropical cooked peeled shrimp inoculated by Brochothrix thermosphacta and Lactococcus piscium CNCM I-4031 during storage at 8 C. International Journal of Food Microbiology 152(3): 82–90. 10.1016/j.ijfoodmicro.2011.07.015
Fernandes, T.H., Ferrão, J., Bell, V. and Chabite, I.T., 2017. Mycotoxins, Food and Health. Journal of Nutritional Health and Food Science 5(7): 1–10
Gallo, A., Fancello, F., Ghilardelli, F., Zara, S., Froldi, F. and Spanghero, M., 2021. Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Animal Feed Science and Technology 277: 114962. 10.1016/j.anifeedsci.2021.114962
Golge, O. and Kabak, B., 2020. Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. Food Control 110: 106982. 10.1016/j.foodcont.2019.106982
Gonçalves, B.L., Muaz, K., Coppa, C.F.S.C., Rosim, R.E., Kamimura, E.S., Oliveira, C.A.F. and Corassin, C.H., 2020. Aflatoxin M1 absorption by non-viable cells of lactic acid bacteria and Saccharomyces cerevisiae strains in Frescal cheese. Food Research International 136: 109604. 10.1016/j.foodres.2020.109604
Gupta, R. and Srivastava, S., 2014. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiology 42: 1–7. 10.1016/j.fm.2014.02.005
Hashemi, S.M.B. and Gholamhosseinpour, A., 2019. Fermentation of table cream by Lactobacillus plantarum strains: effect on fungal growth, aflatoxin M1 and ochratoxin A. International Journal of Food Science and Technology 54: 347–353. 10.1111/ijfs.13943
Hatab, S., Yue, T. and Mohamad, O., 2012. Reduction of patulin in aqueous solution by lactic acid bacteria. Journal of Food Science 77(4): M238–M241. 10.1111/j.1750-3841.2011.02615.x
Heredia-Castro, P.Y., Méndez-Romero, J.I., Hernández-Mendoza, A., Acedo-Félix, E., González-Córdova, A.F. and Vallejo-Cordoba, B., 2015. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese. Journal of Dairy Science 98(12): 8285–8293. 10.3168/jds.2015-10104
Hussain, S., Asi, M.R., Iqbal, M., Khalid, N., Wajih-ul-Hassan, S. and Ariño, A., 2020. Patulin mycotoxin in mango and orange fruits, juices, pulps, and jams marketed in Pakistan. Toxins 12: 52. 10.3390/toxins12010052
Iqbal, S.Z., Rehman, B., Selamat, J., Akram, N., Ahmad, M.N., Sanny, M., Sukor, R. and Samsudin, N.I., 2020. Assessment of fumonisin B1 concentrations in wheat and barley products in the Punjab region of Pakistan. Journal of Food Protection 83: 1284–1288. 10.4315/0362-028X.JFP-19-361
Kademi, H.I., Saad, F.T., Ulusoy, B.H., Baba, I.A. and Hecer, C., 2019. Mathematical model for aflatoxins risk mitigation in food. Journal of Food Engineering 263: 25–29. 10.1016/j.jfoodeng.2019.05.030
Lappa, I.K., Mparampouti, S., Lanza, B. and Panagou, E.Z., 2018. Control of Aspergillus carbonarius in grape berries by Lactobacillus plantarum: A phenotypic and gene transcription study. International Journal of Food Microbiology 275: 56–65. 10.1016/j.ijfoodmicro.2018.04.001
Lavermicocca, P., Angiolillo, L., Lonigro, S.L., Valerio, F., Bevilacqua, A., Perricone, M. and Conte, A., 2018. Lactobacillus plantarum 5BG survives during refrigerated storage bio-preserving packaged Spanish-style table olives (cv.Bella di Cerignola). Frontiers in Microbiology 9:889. 10.3389/fmicb.2018.00889
Le Lay, C., Coton, E., Le Blay, G., Chobert, J.M., Haertlé, T., Choiset, Y. and Mounier, J., 2016. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. International Journal of Food Microbiology 239: 79–85. 10.1016/j.ijfoodmicro.2016.06.020
Leroi, F., Cornet, J., Chevalier, F., Cardinal, M., Coeuret, G., Chaillou, S. and Joffraud, J.J., 2015. Selection of bioprotective cultures for preventing cold-smoked salmon spoilage. International Journal of Food Microbiology 213:79–87. 10.1016/j.ijfoodmicro.2015.05.005
Li, H., Liu, L., Zhang, S., Uluko, H., Cui, W. and Lv, J., 2013. Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control 34(2):675–680. 10.1016/j.foodcont.2013.06.023
Li, J., Liu, L., Li, C., Liu, L., Tan, Y. and Meng, Y., 2020. The ability of Lactobacillus rhamnosus to bind patulin and its application in apple juice. Acta Alimentaria 49: 93–102. 10.1556/066.2020.49.1.12
Liu, Q., Lindow, S.E. and Zhang, J., 2018. Lactobacillus parafarraginis ZH 1 producing anti-yeast substances to improve the aerobic stability of silage. Animal Science Journal 89:1302–1309. 10.1111/asj.13063
Liu, A., Zheng, Y., Liu, L., Chen, S., He, L., Ao, X., Yang, Y. and Liu, S., 2020. Decontamination of aflatoxins by lactic acid bacteria. Current Microbiology 77: 3821–3830. 10.1007/s00284-020-02220-y
Lv, X., Ma, H., Lin, Y., Bai, F., Ge, Y., Zhang, D. and Li, J., 2018. Antifungal activity of Lactobacillus plantarum C10 against Trichothecium roseum and its application in promotion of defense responses in muskmelon (Cucumis melo L.) fruit. Journal of Food Science and Technology 55(9):3703–3711. 10.1007/s13197-018-3300-1
Macri, A.M., Pop, I., Simeanu, D., Toma, D., Sandu, I., Pavel, L.L. and Mintas, O.S., 2021. The occurrence of aflatoxins in nuts and dry nuts packed in four different plastic packaging from the Romanian market. Microorganisms 9: 61. 10.3390/microorganisms9010061
Madi, N. and Boushaba, R., 2017. Identification of Potential Biopreservative Lactic Acid Bacteria Strains Isolated from Algerian Cow’s Milk and Demonstration of Antagonism Against S. aureus in Cheese. Food Science and Technology Research 23:679–688. 10.3136/fstr.23.679
Martinez, M.P., Magnoli, A.P., Pereyra, M.G. and Cavaglieri, L., 2019. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon 172: 1–7. 10.1016/j.toxicon.2019.10.001
Massarolo, K.C., Mendoza, J.R., Verma, T., Kupski, L., Badiale-Furlong, E. and Bianchini, A., 2021. Stability of fumonisin B1 and its bioaccessibility in extruded corn-based products. Mycotoxin Research 37: 161–168. 10.1007/s12550-021-00426-y
Meerpoel, C., Vidal, A., Andjelkovic, M., De Boevre, M., Tangni, E.K., Huybrechts, B., Devreese, M., Croubels, S. and De Saeger, S., 2021. Dietary exposure assessment and risk characterization of citrinin and ochratoxin A in Belgium. Food and Chemical Toxicology 147: 111914. 10.1016/j.fct.2020.111914
Møller, C.O.D.A., Freire, L., Rosim, R.E., Margalho, L.P., Balthazar, C.F., Franco, L.T., Sant’Ana, A.D.S., Corassin, C.H., Rattray, F.P. and Oliveira, C.A.F.D., 2021. Effect of lactic acid bacteria strains on the growth and aflatoxin production potential of Aspergillus parasiticus, and their ability to bind aflatoxin B1, ochratoxin A, and zearalenone in vitro. Frontiers in Microbiology 12: 899. 10.3389/fmicb.2021.655386
Mora-Villalobos, J.A., Montero-Zamora, J., Barboza, N., Rojas-Garbanzo, C., Usaga, J., Redondo-Solano, M., Schroedter, L., Olszewska-Widdrat, A. and López-Gómez, J.P., 2020. Multi-product lactic acid bacteria fermentations: a review. Fermentation 23: 1–21. 10.3390/fermentation6010023
Mosallaie, F., Jooyandeh, H., Hojjati, M. and Fazlara, A., 2019. Biological reduction of aflatoxin B1 in yogurt by probiotic strains of Lactobacillus acidophilus and Lactobacillus rhamnosus. Food Science and Biotechnology 29: 793–803. 10.1007/s10068-019-00722-5
Muaz, K., Riaz, M., Rosim, R.E., Akhtar, S., Corassin, C.H., Gonçalves, B.L. and Oliveira, C.A.F., 2021. In vitro ability of nonviable cells of lactic acid bacteria strains in combination with sorbitan monostearate to bind to aflatoxin M1 in skimmed milk. LWT-Food Science and Technology 147: 111666. 10.1016/j.lwt.2021.111666
Muhialdin, B.J., Saari, N. and Meor Hussin, A.S., 2020. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 25(11): 2655. 10.3390/molecules25112655
Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M. and Saris, P.E., 2022a. Antifungal preservation of food by lactic acid bacteria. Foods 11(3): 395. 10.3390/foods11030395
Nasrollahzadeh, A., Mokhtari, S., Khomeiri, M. and Saris, P.E., 2022b. Mycotoxin detoxification of food by lactic acid bacteria. International Journal of Food Contamination 9(1): 1–9. 10.1186/s40550-021-00087-w
Nazareth, T.D.M., Luz, C., Torrijos, R., Quiles, J.M., Luciano, F.B., Mañes, J. and Meca, G., 2021. Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins 12: 21. 10.3390/toxins12010021
Ngea, G.L.N., Yang, Q., Tchabo, W., Castoria, R., Zhang, X. and Zhang, H., 2021. Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices. International Journal of Food Microbiology 339: 109025. 10.1016/j.ijfoodmicro.2020.109025
Nielsen, B., Colle, M.J. and Ünlü, G., 2021. Meat safety and quality: a biological approach. International Journal of Food Science and Technology 56: 39–51. 10.1111/ijfs.14602
Nikolchina, I. and Rodrigues, P., 2021. A preliminary study on mycobiota and ochratoxin a contamination in commercial palm dates (Phoenix dactylifera). Mycotoxin Research 37: 215–220. 10.1007/s12550-021-00432-0
Pandey, A.K., Shakya, S., Patyal, A., Ali, S.L., Bhonsle, D., Chandrakar, C., Kumar, A., Khan, R. and Hattimare, D., 2021. Detection of aflatoxin M1 in bovine milk from different agro-climatic zones of Chhattisgarh, India, using HPLC-FLD and assessment of human health risks. Mycotoxin Research 37: 265–273. 10.1007/s12550-021-00437-9
Panwar, R., Kumar, N., Kashyap, V., Ram, C. and Kapila, R., 2019. Aflatoxin M1 detoxification ability of probiotic lactobacilli of Indian origin in in vitro digestion model. Probiotics and Antimicrobial Proteins 11:460–469. 10.1007/s12602-018-9414-y
Poormohammadi, A., Bashirian, S., Mir Moeini, E.S., Reza Faryabi, M. and Mehri, F., 2021. Monitoring of aflatoxins in edible vegetable oils consumed in Western Iran in Iran: A risk assessment study. International Journal of Environmental Analytical Chemistry 1–11. 10.1080/03067319.2021.1938023
Przybylska, A., Chrustek, A., Olszewska-Słonina, D., Koba, M. and Kruszewski, S., 2021. Determination of patulin in products containing dried fruits by enzyme-linked immunosorbent assay technique patulin in dried fruits. Food Science and Nutrition 9: 4211–4220. 10.1002/fsn3.2386
Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G. and Fortina, M.G., 2018. Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International 106: 936–944. 10.1016/j.foodres.2018.01.074
Ragoubi, C., Quintieri, L., Greco, D., Mehrez, A., Maatouk, I., D’Ascanio, V., Landoulsi, A. and Avantaggiato, G., 2021. Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins 13: 185. 10.3390/toxins13030185
Rather, I.A., Seo, B.J., Rejish Kumar, V.J., Choi, U.H., Choi, K.H., Lim, J.H. and Park, Y.H., 2013. Isolation and characterization of a proteinaceous antifungal compound from L actobacillus plantarum YML 007 and its application as a food preservative. Letters in Applied Microbiology 57:69–76. 10.1111/lam.12077
Richard, J.L., Payne, G.A., Desjardins, A.E., Maragos, C., Norred, W.P. and Pestka, J.J., 2003. Mycotoxins: risks in plant, animal and human systems. CAST Task Force Report 139:101–103.
Ruggirello, M., Nucera, D., Cannoni, M., Peraino, A., Rosso, F., Fontana, M., Cocolin, L. and Dolci, P., 2019. Antifungal activity of yeasts and lactic acid bacteria isolated from cocoa bean fermentations. Food Research International 115: 519–525. 10.1016/j.foodres.2018.10.002
Russo, P., Arena, M.P., Fiocco, D., Capozzi, V., Drider, D. and Spano, G., 2017. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology 247:48–54. 10.1016/j.ijfoodmicro.2016.04.027
Ryan, L.A.M., Zannini, E., Dal Bello, F., Pawlowska, A., Koehler, P. and Arendt, E.K., 2011. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent forbakery products. International Journal of Food Microbiology 146: 276–283. 10.1016/j.ijfoodmicro.2011.02.036
Sadeghi, A., Ebrahimi, M., Mortazavi, S.A. and Abedfar, A., 2019. Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food Control 95: 298–307. 10.1016/j.foodcont.2018.08.013
Sadiq, F.A., Yan, B., Tian, F., Zhao, J., Zhang, H. and Chen, W., 2019. Lactic acid bacteria as anti-fungal and anti-mycotoxigenic agents: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18: 1403–1436. 10.1111/1541-4337.12481
Sahnouni, F., Benattouche, Z., Matallah-Boutiba, A., Benchohra, M., Moumen Chentouf W., Bouhadi D. and Boutiba Z., 2016.Antimicrobial activity of two marine algae Ulva rigida and Ulva intestinalis collected from Arzew gulf 72 (Western Algeria), Journal of Applied Environmental and Biological Sciences 6: 242–248.
Sajid, M., Mehmood, S., Yuan, Y. and Yue, T., 2019. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies. Drug Metabolism Reviews 51: 105–120. 10.1080/03602532.2019.1589493
Saladino, F., Quiles, J.M., Mañes, J., Fernández-Franzón, M., Luciano, F.B. and Meca, G., 2017. Dietary exposure to mycotoxins through the consumption of commercial bread loaf in Valencia, Spain. LWT 75:697–701. 10.1016/j.lwt.2016.10.029
Salas, M.L., Thierry, A., Lemaitre, M., Garric, G., Harel-Oger, M., Chatel, M. and Coton, E., 2018. Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications. Frontiers in Microbiology 9:1787. 10.3389/fmicb.2018.01787
Saraoui, T., Leroi, F., Björkroth, J. and Pilet, M.F., 2016.Lactococcus piscium: a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food—a review. Journal of Applied Microbiology 12:907–918. 10.1111/jam.13179
Schmidt M., Lynch K.M., Zannini E. and Arendt E.K., 2018. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 88:139–148. 10.1016/j.foodcont.2017.11.041
Sevim, S., Topal, G.G., Tengilimoglu-Metin, M.M., Sancak, B. and Kizil, M., 2019. Effects of inulin and lactic acid bacteria strains on aflatoxin M1 detoxification in yoghurt. Food Control 100: 235–239. 10.1016/j.foodcont.2019.01.028
Sokoutifar, R., Razavilar, V., Anvar, A.A. and Shoeiby, S., 2018. Degraded aflatoxin M1 in artificially contaminated fermented milk using Lactobacillus acidophilus and Lactobacillus plantarum affected by some bio-physical factors. Journal of Food Safety 38: e12544. 10.1111/jfs.12544
Strack, L., Carli, R.C., da Silva, R.V., Sartor, K.B., Colla, L.M. and Reinehr, C.O., 2020. Food biopreservation using antimicrobials produced by lactic acid bacteria. Research, Society and Development 9: e998986666. 10.33448/rsd-v9i8.6666
Taheur, F.B., Mansour, C. and Chaieb, K., 2021. Application of Kefir probiotics strains as aflatoxin B1 binder in culture medium, milk and simulated gastrointestinal conditions. MOL2NET 7: 1–8.
Taheur, F.B., Mansour, C., Jeddou, K.B., Machreki, Y., Kouidhi, B., Abdulhakim, J.A. and Chaieb, K., 2020. Aflatoxin B1 degradation by microorganisms isolated from Kombucha culture. Toxicon 179: 76–83. 10.1016/j.toxicon.2020.03.004
Taheur, F.B., Mansour, C., Kouidhi, B. and Chaieb, K., 2019. Use of lactic acid bacteria for the inhibition of Aspergillus flavus and Aspergillus carbonarius growth and mycotoxin production. Toxicon 166: 15–23. 10.1016/j.toxicon.2019.05.004
Taroub, B., Salma, L., Manel, Z., Ouzari, H.I., Hamdi, Z. and Moktar, H., 2019. Isolation of lactic acid bacteria from grapefruit: anti-fungal activities, probiotic properties, and in vitro detoxification of ochratoxin A. Annals of Microbiology 69: 17–27. 10.1007/s13213-018-1359-6
Tolosa, J., Ruiz, M.J., Ferrer, E. and Vila-Donat, P., 2020. Ochratoxin A: occurrence and carry-over in meat and meat by-products. Reviews in Toxicology 37: 106–110.
Turkoglu, C. and Keyvan, E., 2019. Determination of aflatoxin M1 and ochratoxin A in raw, pasteurized and UHT milk in Turkey. Acta Scientiae Veterinariae 47: 1626. 10.22456/1679-9216.89667
Twarużek, M., Ałtyn, I. and Kosicki, R., 2021. Dietary supplements based on red yeast rice–a source of citrinin? Toxins 13(7): 497. 10.3390/toxins13070497
USDA, 2016. Grain, fungal diseases and mycotoxin reference. United States Grain Inspection, Packers and Stockyards Administration, Washington, DC. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y. and Geng, W., 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology 9: 612285. 10.3389/fbioe.2021.612285
Wayah, S.B. and Philip, K., 2018.Pentocin MQ1: a novel, broad-spectrum, pore-forming bacteriocin from Lactobacillus pentosus CS2 with quorum sensing regulatory mechanism and biopreservative potential. Frontiers in Microbiology 9:564. 10.3389/fmicb.2018.00564
Wei, C., Yu, L., Qiao, N., Zhao, J., Zhang, H., Zhai, Q., Tian, F. and Chen, W., 2020. Progress in the distribution, toxicity, control, and detoxification of patulin: a review. Toxicon 184: 83–93. 10.1016/j.toxicon.2020.05.006
Wiernasz, N., Cornet, J., Cardinal, M., Pilet, M.F., Passerini, D. and Leroi, F., 2017.Lactic acid bacteria selection for biopreservation as a part of hurdle technology approach applied on seafood. Frontiers in Marine Science 4:119. 10.3389/fmars.2017.00119
Yan, B., Zhao, J., Fan, D., Tian, F., Zhang, H. and Chen, W., 2017.Antifungal activity of Lactobacillus plantarum against Penicillium roqueforti in vitro and the preservation effect on Chinese steamed bread. Journal of Food Processing and Preservation 41:e12969. 10.1111/jfpp.12969
Ye, L., Wang, Y., Sun, L., Fang, Z., Deng, Q., Huang, Y., Zheng, P., Shi. Q., Liao, J. and Zhao, J., 2020. The effects of removing aflatoxin B1 and T-2 toxin by lactic acid bacteria in high-salt fermented fish product medium under growth stress. LWT-Food Science and Technology 130: 109540. 10.1016/j.lwt.2020.109540
Yoon, R.B., Hong, S.-Y., Cho, S.M., Lee, K.R., Kim, M., and Chung, S.H., 2016.Aflatoxin M1 levels in dairy products from South Korea. Journal of Food and Nutrition Research 55: 171–180.
Zhang, N., Liu, J., Li, J., Chen, C., Zhang, H., Wang, H.K. and Lu, F.P., 2016. Characteristics and application in food preservatives of Lactobacillus plantarum TK9 isolated from naturally fermented congee. International Journal of Food Engineering 12:377–384. 10.1515/ijfe-2015-0180
Zheng, X., Wei, W., Rao, S., Gao, L., Li, H. and Yang, Z., 2020. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01. Food Control 112: 107147. 10.1016/j.foodcont.2020.107147
Złoch, M., Rogowska, A., Pomastowski, P., Railean-Plugaru, V., Walczak-Skierska, J., Rudnicka, J. and Buszewski, B., 2020. Use of Lactobacillus paracasei strain for zearalenone binding and metabolization. Toxicon 181: 9–18. 10.1016/j.toxicon.2020.03.011
Zoghi, A., Khosravi Darani, K. and Hekmatdoost, A., 2021. Effects of pretreatments on patulin removal from apple juices using Lactobacilli: binding stability in simulated gastrointestinal condition and modeling. Probiotics and Antimicrobial Proteins 13: 135–145. 10.1007/s12602-020-09666-3
Zoghi, A., Khosravi-Darani, K., Sohrabvandi, S. and Attar, H., 2019. Patulin removal from synbiotic apple juice using Lactobacillus plantarum ATCC 8014. Journal of Applied Microbiology 126: 1149–1160. 10.1111/jam.14172
Zudaire, L., Viñas, I., Plaza, L., Iglesias, M.B., Abadias, M. and Aguiló-Aguayo, I., 2018.Evaluation of postharvest calcium treatment and biopreservation with Lactobacillus rhamnosus GG on the quality of fresh-cut ‘Conference’pears. Journal of the Science of Food and Agriculture 98:4978–4987. 10.1002/jsfa.9031
