Brusatol inhibits the growth of prostate cancer cells and reduces HIF-1α/VEGF expression and glycolysis under hypoxia

Main Article Content

Mi Wang
Liyang Dai
Wei Yan
Ying Chen
Yakun Wang

Keywords

Brusatol, hypoxia, HIF-1α, prostate cancer, VEGF, glycolysis

Abstract

Prostate cancer (PCa) has a high rate of morbidity and mortality, which urges us to find a unique and effective drug for treatment. Brusatol, a triterpenoid-degraded derivative, possesses antitumor activities. However, the significance of Brusatol in prostate cancer has not yet been completely elucidated. Therefore, this study aimed to explore how Brusatol affected prostate cancer cells. DU145 and PC-3 cell lines were chosen as experimental models. After Brusatol was added to relevant cells in culture, CCK-8 and colony formation experiments were used to assess cell viability; apoptosis rates were calculated using flow cytometry; and transwell assays were utilized to assess cell migration and invasion ability. Vimentin, N-cadherin, E-cadherin, zonula occludens-1 (ZO-1), hypoxia- inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase (LDHA) protein expression were evaluated by western blotting, and glucose consumption in cells was assessed using related equipment. In DU145 and PC-3 cells, Brusatol drastically reduced cell proliferation, promoted apoptosis, hindered migration and invasion. Considerably decreased HIF-1α and VEGF protein levels under hypoxia were detected. Furthermore, the expression of GLUT1, HK2, and LDHA was diminished, resulting in decreased glucose consumption in a Brusatol concentration-dependent manner. These findings demonstrate that Brusatol serves as a potent antitumor drug that suppresses DU145 and PC-3 cancer cell growth, metastasis, and glycolysis. This discovery could provide a possible clinical treatment strategy for prostate cancer.

Abstract 747 | PDF Downloads 864 HTML Downloads 104 XML Downloads 18

References

Bovilla, V.R., Kuruburu, M.G., Bettada, V.G., Krishnamurthy, J., Sukocheva, O.A., Thimmulappa, R.K., Shivananju, N.S., Balakrishna, J.P. and Madhunapantula, S.V., 2021. Targeted inhibition of anti-inflammatory regulator Nrf2 results in breast cancer retardation in vitro and in vivo. Biomedicines 9: 1119. 10.3390/biomedicines9091119

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68: 394–424. 10.3322/caac.21492

Cowman, S.J. and Koh, M.Y., 2022. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends in Cancer 8: 28–42. 10.1016/j.trecan.2021.10.004

Dewangan, J., Srivastava, S., Mishra, S., Divakar, A., Kumar, S. and Rath, S.K., 2019. Salinomycin inhibits breast cancer progression via targeting HIF-1α/VEGF mediated tumor angiogenesis in vitro and in vivo. Biochemical Pharmacology 164: 326–335. 10.1016/j.bcp.2019.04.026

Ding, Y., Tang, W., Pei, F., Fu, L., Ma, P., Bai, J., Lin, M., Liu, Y. and Hou, Q., 2021. Brusatol derivative-34 attenuates allergic airway inflammation via inhibition of the spleen tyrosine kinase pathway. Frontiers in Pharmacology 12: 587417. 10.3389/fphar.2021.587417

Fang, C., Dai, L., Wang, C., Fan, C., Yu, Y., Yang, L., Deng, H. and Zhou, Z., 2021. Secretogranin II impairs tumor growth and angiogenesis by promoting degradation of hypoxia-inducible factor-1α in colorectal cancer. Molecular Oncology 15: 3513–3526. 10.1002/1878-0261.13044

Fox, J.J., Gavane, S.C., Blanc-Autran, E., Nehmeh, S., Gönen, M., Beattie, B., Vargas, H.A., Schöder, H., Humm, J.L., Fine, S.W., Lewis, J.S., Solomon, S.B., Osborne, J.R., Veach, D., Sawyers, C.L., Weber, W.A., Scher, H.I., Morris, M.J. and Larson, S.M., 2018. Positron emission tomography/computed tomography-based assessments of androgen receptor expression and glycolytic activity as a prognostic biomarker for metastatic castration-resistant prostate cancer. JAMA Oncology 4: 217–224. 10.1001/jamaoncol.2017.3588

Guo, K., Lai, C., Shi, J., Tang, Z., Liu, C., Li, K. and Xu, K., 2021. A novel risk factor model based on glycolysis-associated genes for predicting the prognosis of patients with prostate cancer. Frontiers in Oncology 11: 605810. 10.3389/fonc.2021.605810

Harder, B., Tian, W., La Clair, J.J., Tan, A.-C., Ooi, A., Chapman, E. and Zhang, D.D., 2017. Brusatol overcomes chemoresistance through inhibition of protein translation. Molecular Carcino-genesis 56: 1493–1500. 10.1002/mc.22609

Hayashi, K., Nakazato, Y., Ouchi, M., Fujita, T., Endou, H. and Chida, M., 2021. Antitumor effect of dimethyl itaconate on thymic carcinoma by targeting LDHA-mTOR axis. Life Sciences 282: 119847. 10.1016/j.lfs.2021.119847

Lee, J.H., Mohan, C.D., Deivasigamani, A., Jung, Y.Y., Rangappa, S., Basappa, S., Chinnathambi, A., Alahmadi, T.A., Alharbi, S.A., Garg, M., Lin, Z.-X., Rangappa, K.S., Sethi, G., Hui, K.M. and Ahn, K.S., 2020. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma. Journal of Advanced Research 26: 83–94. 10.1016/j.jare.2020.07.004

Lee, S.-Y., Kim, H.J., Oh, S.C. and Lee, D.-H., 2018. Genipin inhibits the invasion and migration of colon cancer cells by the suppression of HIF-1α accumulation and VEGF expression. Food and Chemical Toxicology 116: 70–76. 10.1016/j.fct.2018.04.005

Leimgruber, A., Hickson, K., Lee, S.T., Gan, H.K., Cher, L.M., Sachinidis, J.I., O’Keefe, G.J. and Scott, A.M., 2020. Spatial and quantitative mapping of glycolysis and hypoxia in glioblastoma as a predictor of radiotherapy response and sites of relapse. European Journal of Nuclear Medicine and Molecular Imaging 47: 1476–1485. 10.1007/s00259-020-04706-0

Li, M., Gao, F., Zhao, Q., Zuo, H., Liu, W. and Li, W., 2020. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death & Disease 11: 381. 10.1038/s41419-020-2579-9

Li, S., Zhan, Y., Xie, Y., Wang, Y. and Liu, Y., 2020. The impact of icariside II on human prostate cancer cell proliferation, mobility, and autophagy via PI3K-AKT-mTOR signaling pathway. Drug Design, Development and Therapy 14: 4169–4178. 10.2147/DDDT.S268524

Li, Z., Ruan, J.-Y., Sun, F., Yan, J.-J., Wang, J.-L., Zhang, Z.-X., Zhang, Y. and Wang, T., 2019. Relationship between structural characteristics and plant sources along with pharmacology research of quassinoids. Chemical & Pharmaceutical Bulletin 67: 654–665. 10.1248/cpb.c18-00958

Liao, L.L., Kupchan, S.M. and Horwitz, S.B., 1976. Mode of action of the antitumor compound bruceantin, an inhibitor of protein synthesis. Molecular Pharmacology 12: 167–176.

Liu, J., Peng, Y., Shi, L., Wan, L., Inuzuka, H., Long, J., Guo, J., Zhang, J., Yuan, M., Zhang, S., Wang, X., Gao, J., Dai, X., Furumoto, S., Jia, L., Pandolfi, P.P., Asara, J.M., Kaelin, W.G., Liu, J. and Wei, W., 2021. Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Research 31: 80–93. 10.1038/s41422-020-0372-z

Liu, Y., Nelson, M.V., Bailey, C., Zhang, P., Zheng, P., Dome, J.S., Liu, Y. and Wang, Y., 2021. Targeting the HIF-1α-IGFBP2 axis therapeutically reduces IGF1-AKT signaling and blocks the growth and metastasis of relapsed anaplastic Wilms tumor. Oncogene 40: 4809–4819. 10.1038/s41388-021-01907-1

Lu, H., Forbes, R.A. and Verma, A., 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of Biological Chemistry 277: 23111–23115. 10.1074/jbc.M202487200

Lu, R.-J., Zhao, G.-Z., Jiang, R., He, S., Xu, H., He, J.-M., Sun, Y., Wu, M.-N., Ran, J.-H., Chen, D.-L. and Li, J., 2022. Brusatol inhibits proliferation and metastasis of colorectal cancer by targeting and reversing the RhoA/ROCK1 Pathway. BioMed Research International 2022: 7132159. 10.1155/2022/7132159

Lu, Y., Wang, B., Shi, Q., Wang, X., Wang, D. and Zhu, L., 2016. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Scientific Reports 6: 39123. 10.1038/srep39123

Luo, Z., Luo, Y. and Xiao, K., 2021. A-kinase interacting protein 1 promotes cell invasion and stemness activating HIF-1α and β-catenin signaling pathways in gastric cancer under hypoxia condition. Frontiers in Oncology 11: 798557. 10.3389/fonc.2021.798557

Moon, E.J., Mello, S.S., Li, C.G., Chi, J.-T., Thakkar, K., Kirkland, J.G., Lagory, E.L., Lee, I.J., Diep, A.N., Miao, Y., Rafat, M., Vilalta, M., Castellini, L., Krieg, A.J., Graves, E.E., Attardi, L.D. and Giaccia, A.J., 2021. The HIF target MAFF promotes tumor invasion and metastasis through IL11 and STAT3 signaling. Nature Communications 12: 4308. 10.1038/s41467-021-24631-6

Mu, G., Zhu, Y., Dong, Z., Shi, L., Deng, Y. and Li, H., 2021. Calmodulin 2 facilitates angiogenesis and metastasis of gastric cancer STAT3/HIF-1A/VEGF-a mediated macrophage polarization. Frontiers in Oncology 11: 727306. 10.3389/fonc.2021.727306

Nishimura, M., Fuchino, H., Takayanagi, K., Kawakami, H., Nakayama, H., Kawahara, N. and Shimada, Y., 2021. Toxicity of Jegosaponins A and B from Siebold et al. zuccarini in prostate cancer cells and zebrafish embryos resulting from increased membrane permeability. International Journal of Molecular Sciences 22: 6354. 10.3390/ijms22126354

Oh, E.-T., Kim, C.W., Kim, H.G., Lee, J.-S. and Park, H.J., 2017. Brusatol-mediated inhibition of c-Myc increases HIF-1α degradation and causes cell death in colorectal cancer under hypoxia. Theranostics 7: 3415–3431. 10.7150/thno.20861

Palazon, A., Goldrath, A. W., Nizet, V. and Johnson, R. S., 2014. HIF transcription factors, inflammation, and immunity. Immunity 41: 518-528. 10.1016/j.immuni.2014.09.008

Roncati, L., Vadala, M., Corazzari, V. and Palmieri, B., 2021. Immunohistochemical expression of cannabinoid receptors in women’s cancers: what’s new? European Journal of Gynaeco-logical Oncology 42: 193–195. 10.31083/j.ejgo.2021.02.5463

Semenza, G.L., 2003. Targeting HIF-1 for cancer therapy. Nature Reviews Cancer 3: 721–732. 10.1038/nrc1187

Siegel, R.L., Miller, K.D. and Jemal, A., 2020. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70: 7–30. 10.3322/caac.21590

Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B., 2009. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324: 1029–1033. 10.1126/science.1160809

Vaupel, P. and Mayer, A., 2007. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Reviews 26: 225–239. 10.1007/s10555-007-9055-1

Wang, K., Ruan, H., Xu, T., Liu, L., Liu, D., Yang, H., Zhang, X. and Chen, K., 2018. Recent advances on the progressive mechanism and therapy in castration-resistant prostate cancer. OncoTargets and Therapy 11: 3167–3178. 10.2147/OTT.S159777

Wang, M., Shi, G., Bian, C., Nisar, M.F., Guo, Y., Wu, Y., Li, W., Huang, X., Jiang, X., Bartsch, J.W., Ji, P. and Zhong, J.L., 2018. UVA irradiation enhances brusatol-mediated inhibition of melanoma growth by downregulation of the Nrf2-mediated antioxidant response. Oxidative Medicine and Cellular Longevity 2018: 9742154. 10.1155/2018/9742154

Wang, T., Dou, Y., Lin, G., Li, Q., Nie, J., Chen, B., Xie, J., Su, Z., Zeng, H., Chen, J. and Xie, Y., 2021. The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: the detection of brusatol and its role. Biomedicine & Pharmacotherapy 134: 111122. 10.1016/j.biopha.2020.111122

Wei, G., Chen, J., Jing, Z., Li, Y., Li, Z., Zheng, W., Sun, X., Zhao, W., Zhang, Z., Wang, X., Han, H., Li, C., Zhang, Y. and Ma, P., 2022. Glucose transporter 1 (GLUT1)-targeting and hypoxia-activated mitochondria-specific chemo-thermal therapy via a glycosylated poly(amido amine)/celastrol (PAMAM/Cel) complex. Journal of Colloid and Interface Science 608: 1355–1365. 10.1016/j.jcis.2021.10.129

Wei, H., Xu, Z., Chen, L., Wei, Q., Huang, Z., Liu, G., Li, W., Wang, J., Tang, Q. and Pu, J., 2022. Long non-coding RNA PAARH promotes hepatocellular carcinoma progression and angiogenesis via upregulating HOTTIP and activating HIF-1α/VEGF signaling. Cell Death & Disease 13: 102. 10.1038/s41419-022-04505-5

Xie, J., Lai, Z., Zheng, X., Liao, H., Xian, Y., Li, Q., Wu, J., Ip, S., Xie, Y., Chen, J., Su, Z., Lin, Z. and Yang, X., 2021. Apoptotic activities of brusatol in human non-small cell lung cancer cells: Involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. Toxicology 451: 152680. 10.1016/j.tox.2021.152680

Xing, S., Nong, F., Wang, Y., Huang, D., Qin, J., Chen, Y.-F., He, D.-H., Wu, P.-E., Huang, H., Zhan, R., Xu, H. and Liu, Y.-Q., 2022. Brusatol has therapeutic efficacy in non-small cell lung cancer by targeting Skp1 to inhibit cancer growth and metastasis. Pharmacological Research 176: 106059. 10.1016/j.phrs.2022.106059

Xu, W.W., Tian, J., Zhu, Y.M. and Ren, Q.L., 2021. Clinical observation and mechanism of the elimination of HPV16/18/58 subtype infection and the reversal of grade I cervical intraepithelial neoplasia in Han Chinese women treated with modified Ermiao granules. European Journal of Gynaecological Oncology 42: 293–299. 10.31083/j.ejgo.2021.02.5509

Yan, L., Li, J., Zhao, T., Wang, H. and Lai, G., 2015. Over-expression of cannabinoid receptor 2 induces the apoptosis of cervical carcinoma Caski cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chinese Journal of Cellular and Molecular Immunology 31: 758–762.

Yang, Y., Tian, Z., Guo, R. and Ren, F., 2020. Nrf2 inhibitor, brusatol in combination with trastuzumab exerts synergistic antitumor activity in HER2-positive cancers by inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 pathways. Oxidative Medicine and Cellular Longevity 2020: 9867595. 10.1155/2020/9867595

Ye, R., Dai, N., He, Q., Guo, P., Xiang, Y., Zhang, Q., Hong, Z. and Zhang, Q., 2018. Comprehensive anti-tumor effect of Brusatol through inhibition of cell viability and promotion of apoptosis caused by autophagy via the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicine & Pharmacotherapy 105: 962–973. 10.1016/j.biopha.2018.06.065

Zhang, L., Feng, X., Ma, D., Yang, J., Jiang, H., Zhang, Y. and He, W., 2013. Brusatol isolated from Brucea javanica (L.) Merr. induces apoptotic death of insect cell lines. Pesticide Biochemistry and Physiology 107: 18–24. 10.1016/j.pestbp.2013.04.007

Zhang, Y., Mou, Y., Liang, C., Zhu, S., Liu, S., Shao, P., Li, J. and Wang, Z., 2021. Promoting cell proliferation, cell cycle progression, and glycolysis: glycometabolism-related genes act as prognostic signatures for prostate cancer. The Prostate 81: 157–169. 10.1002/pros.24092

Ziello, J.E., Jovin, I.S. and Huang, Y., 2007. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. The Yale Journal of Biology and Medicine 80: 51–6.