Development of antimicrobial bioaerogel based on Zataria multiflora essential oil to extending ground meat shelf life
Main Article Content
Keywords
cellulose-aerogel, vapor phase essential oil, antimicrobial emitting, minced beef, Zataria multiflora
Abstract
Active packaging has become increasingly popular in recent years due to its ability to prolong the shelf life of food. This study used a novel bioaerogel composite consisting of Salep and cellulose derived from grape stalk waste as a carrier for loading and then gradually releasing essential oil during storage in active meat packaging. Then the characteristics of two types of aerogels including morphology, density, porosity, water vapor absorption capacity, and viscosity of their precursor hydrogel were investigated. A total of 99.5% of these compounds were identified in Zataria multiflora essential oil (ZMEO). X-ray diffraction and thermogravimetric analysis of cellulose and cellulose-Salep aerogels showed the crystalline structure of cellulose aerogel, with a thermal decomposition temperature of 350 °C. X-ray diffraction analysis of cellulose revealed three prominent peaks at 16°, 22°, and 34°, corresponding to the (110), (200), and (004) crystal planes, respectively. Then, different amounts of ZMEO were loaded on aerogels, and the minimum inhibitory dose (MID) of ZMEO in vapor phase on meat microbiota and Pseudomonas aeruginosa was reported as 256 (µL/Lheadspace). Application of cellulose and cellulose-Salep aerogels with 10 × MID ZMEO per liter headspace of meat package reduced 1.8 and 1.4 log10 CFU/g of total mesophilic bacteria, 2 and 1.6 log10 CFU/g of total psychrotrophic bacteria, and 1.4 and 0.8 log10 CFU/g of total coliform during the 9-day storage in the refrigerator compared to the control samples. Low-value byproducts from renewable resources can be used to produce bioaerogels for packaging applications. These bioaerogels offer cost-effective solution for antimicrobial and antioxidant food packaging.
References
Almasi, H., Jahanbakhsh Oskouie, M., & Saleh, A. 2021. A review on techniques utilized for design of controlled release food active packaging. Critical Reviews in Food Science and Nutrition, 61(15): 2601–2621. https://doi.org/10.1080/10408398.2020.1783199
Chen, C., Xu, Z., Ma, Y., Liu, J., Zhang, Q., Tang, Z., Fu, K., Yang, F., & Xie, J. 2018. Properties, vapour-phase antimicrobial and antioxidant activities of active poly(vinyl alcohol) packaging films incorporated with clove oil. Food Control, 88: 105–112. https://doi.org/https://doi.org/10.1016/j.foodcont.2017.12.039
Cid-Pérez, T. S., Munguía-p, R., & Virginia, G. 2024. Carvacrol and thymol effect in vapor phase on Escherichia coli and Salmonella serovar Typhimurium growth inoculated in a fresh salad. Heliyon, 10 (9): e29638. https://doi.org/10.1016/j.heliyon.2024.e29638
Ciuffarin, F., Négrier, M., Plazzotta, S., Libralato, M., Calligaris, S., Budtova, T., & Manzocco, L. 2023. Interactions of cellulose cryogels and aerogels with water and oil: Structure-function relationships. Food Hydrocolloids, 140: 108631. https://doi.org/10.1016/j.foodhyd.2023.108631
Colín-Chávez, C., Virgen-Ortiz, J. J., Martínez-Téllez, M. Á., Avelino-Ramírez, C., Gallegos-Santoyo, N. L., & Miranda-Ackerman, M. A. 2024. Control of anthracnose (Colletotrichum gloeosporioides) growth in “Hass” avocado fruit using sachets filled with oregano oil-starch-capsules. Future Foods, 10: 100394. https://doi.org/10.1016/j.fufo.2024.100394
Cruz-Tirado, J. P., Ferreira, R. S. B., Lizárraga, E., Tapia-Blacido, D. R., Silva, N. C. C., Angelats-Silva, L., & Siche, R. 2020. Bioactive Andean sweet potato starch-based foam incorporated with oregano or thyme essential oil. Food Packaging and Shelf Life, 23: 100457–100466. https://doi.org/10.1016/j.fpsl.2019.100457
da Silva, F. T., de Oliveira, J. P., Fonseca, L. M., Bruni, G. P., da Rosa Zavareze, E., & Dias, A. R. G. 2020. Physically cross-linked aerogels based on germinated and non-germinated wheat starch and PEO for application as water absorbers for food packaging. International Journal of Biological Macromolecules, 155: 6–13. https://doi.org/10.1016/j.ijbiomac.2020.03.123
De Berardinis, L., Plazzotta, S., Magnan, M., & Manzocco, L. 2024. Hydrophilic or hydrophobic coating of whey protein aerogels obtained by supercritical-CO2-drying: Effect on physical properties, moisture adsorption and interaction with water and oil in food systems. Innovative Food Science & Emerging Technologies, 91: 103530. https://doi.org/10.1016/j.ifset.2023.103530
Duong, Y. H. P., Le, T. M., Le, P. K., & Tran, V. T. 2023. Fabrication of cellulose–chitosan composites aerogel from agricultural wastes for food packaging. Iranian Polymer Journal, 32(9): 1199–1208. https://doi.org/10.1007/s13726-023-01192-7
Ezati, P., Rhim, J. W., Moradi, M., Tajik, H., & Molaei, R. 2020. CMC and CNF-based alizarin incorporated reversible pH-responsive color indicator films. Carbohydrate Polymers, 246: 116614. https://doi.org/10.1016/j.carbpol.2020.116614
Fontes-Candia, C., Erboz, E., Martínez-Abad, A., López-Rubio, A., & Martínez-Sanz, M. (2019). S Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass. Food Hydrocolloids, 96:151–160. https://doi.org/10.1016/j.foodhyd.2019.05.011
Ghorbani, M., Moradi, M., Tajik, H., Molaei, R., & Alizadeh, A. 2024. Carbon dots embedded bacterial cellulose membrane as active packaging : Toxicity , in vitro release and application in minced beef packaging. Food Chemistry, 433: 137311. https://doi.org/10.1016/j.foodchem.2023.137311
Ghorbani, M., Tajik, H., Moradi, M., Molaei, R., & Alizadeh, A. 2022. One-pot microbial approach to synthesize carbon dots from baker’s yeast-derived compounds for the preparation of antimicrobial membrane. Journal of Environmental Chemical Engineering, 10(3): 107525. https://doi.org/10.1016/j.jece.2022.107525
Ghosh, T., Roy, S., Khan, A., Mondal, K., Ezati, P., & Rhim, J.-W. 2024. Agricultural waste-derived cellulose nanocrystals for sustainable active food packaging applications. Food Hydrocolloids, 154:110141. https://doi.org/10.1016/j.foodhyd.2024.110141
Ju, J., Chen, X., Xie, Y., Yu, H., Guo, Y., & Cheng, Y. 2019. Application of essential oil as a sustained release preparation in food packaging. Trends in Food Science & Technology, 92(1800): 22–32. https://doi.org/10.1016/j.tifs.2019.08.005
Kashiri, M., Cerisuelo, J. P., Domínguez, I., López-carballo, G., Muriel-gallet, V., Gavara, R., & Hernández-muñoz, P. 2017. Zein films and coatings as carriers and release systems of Zataria multiflora Boiss. essential oil for antimicrobial food packaging. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2017.02.021
Kuntzler, S. G., Costa, J. A. V., Brizio, A. P. D. R., & Morais, M. G. de. 2020. Development of a colorimetric pH indicator using nanofibers containing Spirulina sp. LEB 18. Food Chemistry, 328: 126768. https://doi.org/10.1016/j.foodchem.2020.126768
Kurt, A., & Kahyaoglu, T. 2017. Purification of glucomannan from salep: Part 2. Structural characterization. Carbohydrate Polymers, 169:406. https://doi.org/https://doi.org/10.1016/j.carbpol.2017.04.052
Li, B., Chen, M., Wu, Y., Liu, B., & Huang, G. 2024. Effects of glycerol and PVA on gelatin/gum Arabic aerogels: Microstructure, mechanical properties, and applications for food monitoring. Food Hydrocolloids, 149: 109515. https://doi.org/10.1016/j.foodhyd.2023.109515
Li, X., Xiao, N., Xiao, G., Bai, W., Zhang, X., & Zhao, W. 2021. Lemon essential oil/vermiculite encapsulated in electrospun konjac glucomannan-grafted-poly (acrylic acid)/polyvinyl alcohol bacteriostatic pad: Sustained control release and its application in food preservation. Food Chemistry, 348: 129021. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129021
Liebner, F., Aigner, N., Schimper, C., Potthast, A., & Rosenau, T. 2012. Bacterial cellulose aerogels: From lightweight dietary food to functional materials. Functional Materials from Renewable Sources. 1107:, 4–57. https://doi.org/doi:10.1021/bk-2012-1107.ch004
Liu, Q., Zhang, M., Bhandari, B., Xu, J., & Yang, C. 2020. Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control, 107: 106771. https://doi.org//10.1016/j.foodcont.2019.106771
López, P., Sánchez, C., Batlle, R., & Nerín, C. 2007. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. Journal of Agricultural and Food Chemistry, 55(11): 4348. https://doi.org/10.1021/jf063295u
Matan, N., Limbo, S., Piergiovanni, L., & Songsamoe, S. 2023. Controlled release of Michelia alba oil vapour from plastic sachets to control the growth of Aspergillus flavus on brown rice and its possible mode of action. Food Control, 146: 109504. https://doi.org/10.1016/j.foodcont.2022.109504
Mirmoeini, S. S., Hosseini, S. H., Lotfi Javid, A., Esmaeili Koutamehr, M., Sharafi, H., Molaei, R., & Moradi, M. 2023b. Essential oil-loaded starch/cellulose aerogel: Preparation, characterization and application in cheese packaging. International Journal of Biological Macromolecules, 244: 125356–125365. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2023.125356
Mirmoeini, S. S., Moradi, M., Tajik, H., Almasi, H., & Miguel Gama, F. 2023b. Cellulose/Salep-based intelligent aerogel with red grape anthocyanins: Preparation, characterization and application in beef packaging. Food Chemistry, 136493. https://doi.org/https://doi.org/10.1016/j.foodchem.2023.136493
Moradinezhad, F., Hedayati, S., & Ansarifar, E. 2023. Assessment of Zataria multiflora essential oil - incorporated electrospun polyvinyl alcohol fiber mat as active packaging. Polymers, 15(4): 1048. https://doi.org/10.3390/polym15041048
Mukurumbira, A. R., Shellie, R. A., Keast, R., Palombo, E. A., Muir, B. W., & Jadhav, S. R. 2023. The antimicrobial efficacy of native Australian essential oils in liquid and vapour phase against foodborne pathogens and spoilage microorganisms. Food Control, 151: 109774. https://doi.org/https://doi.org/10.1016/j.foodcont.2023.109774
Nurul Syahida, S., Ismail-Fitry, M. R., Ainun, Z. M. A., & Nur Hanani, Z. A. 2021. Effects of gelatin/palm wax/lemongrass essential oil (GPL)-coated Kraft paper on the quality and shelf life of ground beef stored at 4 ℃. Food Packaging and Shelf Life, 28: 100640–100649. https://doi.org/https://doi.org/10.1016/j.fpsl.2021.100640
Oral, N., Vatansever, L., Sezer, Ç., Aydın, B., Güven, A., Gülmez, M., Başer, K. H. C., & Kürkçüoğlu, M. 2009. Effect of absorbent pads containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degrees Celsius. Poultry Science, 88(7): 1459. https://doi.org/https://doi.org/10.3382/ps.2008-00375
Otoni, C. G., Espitia, P. J. P., Avena-Bustillos, R. J., & McHugh, T. H. 2016. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83: 60–73. https://doi.org/10.1016/j.foodres.2016.02.018
Pantić, M., Horvat, G., Knez, Ž., & Novak, Z. 2020. Preparation and characterization of chitosan-coated pectin aerogels: curcumin case study. Molecules, 25(5): 1187. https://doi.org/10.3390/molecules25051187
Roopa, H., Panghal, A., Kumari, A., Chhikara, N., Sehgal, E., & Rawat, K. 2023. Active packaging in food industry. In Novel Technologies in Food Science (eds N. Chhikara, A. Panghal and G. Chaudhary), 375–404. https://doi.org/https://doi.org/10.1002/9781119776376.ch10
Rout, S., Tambe, S., Deshmukh, R. K., Mali, S., Cruz, J., Srivastav, P. P., Amin, P. D., Gaikwad, K. K., Andrade, E. H. de A., & Oliveira, M. S. de. 2022. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends in Food Science & Technology, 129: 421–439. https://doi.org/https://doi.org/10.1016/j.tifs.2022.10.012
Sajed, H., Sahebkar, A., & Iranshahi, M. 2013. Zataria multiflora Boiss. (Shirazi thyme)—An ancient condiment with modern pharmaceutical uses. Journal of Ethnopharmacology, 145(3): 686. https://doi.org/10.1016/j.jep.2012.12.018
Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. 2021. Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/ microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117: 106719. https://doi.org/10.1016/j.foodhyd.2021.106719
Selvasekaran, P., & Chidambaram, R. 2022. Bioaerogels as food materials : A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocolloids, 131: 107760. https://doi.org/10.1016/j.foodhyd.2022.107760
Sen, S., Singh, A., Bera, C., Roy, S., & Kailasam, K. 2022. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review. Cellulose, 29(9):4805. https://doi.org/10.1007/s10570-022-04586-7
Shafiei, H., Saei-Dehkordi, S., Moradi, M., & Molaei, R. 2024. Preparation and antibacterial performance of bacterial nanocellulose sachet containing Zataria multiflora essential oil loaded halloysite nanotubes on Escherichia coli O157:H7 in cheese. LWT, 194: 115812. https://doi.org/10.1016/j.lwt.2024.115812
Sharafi, H., Moradi, M., & Sharafi, K. 2023. A systematic review and meta-analysis of the use of plant essential oils and extracts in the development of antimicrobial edible films for dairy application. Veterinary Research Forum, 14(4): 179. https://doi.org/10.30466/vrf.2022.1986122.3730
Sohrabi, N., Almasi, H., & Moradi, M. 2024. Controlled porosity intelligent aerogel based on chitosan nanofiber, anthocyanins and starch nanoparticles: Preparation, characterization and application in monitoring food spoilage. Food Hydrocolloids, 156: 110261. https://doi.org/10.1016/j.foodhyd.2024.110261
Tao, R., Sedman, J., & Ismail, A. 2022. Food Hydrocolloids Characterization and in vitro antimicrobial study of soy protein isolate films incorporating carvacrol. Food Hydrocolloids, 122: 107091. https://doi.org/10.1016/j.foodhyd.2021.107091
Trucillo, P., Cardea, S., Baldino, L., & Reverchon, E. 2020. Production of liposomes loaded alginate aerogels using two supercritical CO2 assisted techniques. Journal of CO2 Utilization, 39: 101161–101170. https://doi.org/10.1016/j.jcou.2020.101161
Tuan Mohamood, N. F.-Z., Abdul Halim, A. H., & Zainuddin, N. 2021. Carboxymethyl cellulose hydrogel from biomass waste of oil palm empty fruit bunch using calcium chloride as crosslinking agent. Polymers, 13(23): 4056. https://doi.org/10.3390/polym13234056
Ullah, A., Saito, Y., Ullah, S., Haider, M. K., Nawaz, H., Duy-Nam, P., Kharaghani, D., & Kim, I. S. 2021. Bioactive Sambong oil-loaded electrospun cellulose acetate nanofibers: Preparation, characterization, and in-vitro biocompatibility. International Journal of Biological Macromolecules, 166: 1009. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.10.257
Varghese, S. A., Pulikkalparambil, H., Promhuad, K., Srisa, A., Laorenza, Y., Jarupan, L., Nampitch, T., Chonhenchob, V., & Harnkarnsujarit, N. 2023. Renovation of agro-waste for sustainable food packaging: A review. Polymers, 15(3), 1–25. https://doi.org/10.3390/polym15030648
Volić, M., Pećinar, I., Micić, D., Đorđević, V., Pešić, R., Nedović, V., & Obradović, N. 2022. Design and characterization of whey protein nanocarriers for thyme essential oil encapsulation obtained by freeze-drying. Food Chemistry, 386: 132749. https://doi.org/10.1016/j.foodchem.2022.132749
Wang, J., Cheng, Y., Li, S., Liu, B., Yang, L., Geng, F., Xie, S., Qi, R., Zhang, Y., Liu, D., & Xia, H. 2024. Enhanced properties of gelatin films incorporated with TiO2-loaded reduced graphene oxide aerogel microspheres for active food packaging applications. International Journal of Biological Macromolecules, 261: 129772. https://doi.org/10.1016/j.ijbiomac.2024.129772
Wani, S. A., Naik, H. ., Wagay, J. A., Ganie, N. A., Zafar Mulla, M., & Dar, B. 2022. Mentha: A review on its bioactive compounds and potential health benefits. Quality Assurance and Safety of Crops & Foods, 14(4):154. https://doi.org/10.15586/qas.v14i4.1129
Wu, K., Lin, Y., Chai, X., Duan, X., Zhao, X., & Chun, C. 2019. Mechanisms of vapor-phase antibacterial action of essential oil from cinnamomum camphora var. linaloofera Fujita against Escherichia coli. Food Science & Nutrition, 7(8): 2546. https://doi.org/https://doi.org/10.1002/fsn3.1104
Xing, H., Fei, Y., Cheng, J. J., Wang, C., Zhang, J., Niu, C., Fu, Q., Cheng, J. J., & Lu, L. 2022. Green preparation of durian rind-based cellulose nanofiber and its application in aerogel. Molecules, 27(19): 6507. https://doi.org/10.3390/molecules27196507
Zhang, T., Xiao, S., Fan, K., He, H., & Qin, Z. 2022. Preparation and adsorption properties of green cellulose-based composite aerogel with selective adsorption of methylene blue. Polymer, 258: 125320. https://doi.org/https://doi.org/10.1016/j.polymer.2022.125320
Zhang, Z., Wang, X., Gao, M., Zhao, Y., & Chen, Y. 2020. Sustained release of an essential oil by a hybrid cellulose nanofiber foam system. Cellulose, 27(5): 2709. https://doi.org/10.1007/s10570-019-02957-1
Zhou, J., Kong, L., 2023. Encapsulation and retention profile of thymol in the preformed “ empty ” V-type starch inclusion complex. Food Frontiers, 4: 902. https://doi.org/10.1002/fft2.222
Zia, J., Mancini, G., Bustreo, M., Zych, A., Donno, R., Athanassiou, A., & Fragouli, D. 2021. Porous pH natural indicators for acidic and basic vapor sensing. Chemical Engineering Journal, 403: 126373. https://doi.org/https://doi.org/10.1016/j.cej.2020.126373
Zubair, M., Shahzad, S., Hussain, A., Pradhan, R. A., Arshad, M., & Ullah, A. 2022. Current trends in the utilization of essential oils for polysaccharide- and protein-derived food packaging materials. Polymers. 14(6). https://doi.org/10.3390/polym14061146