Identification and Characterization of Novel Bioactive Peptide From Red Seaweed (Pyropia vietnamensis) Proteins

Main Article Content

Nur Iliana Basri
Amiza Mat Amin
Fisal Ahmad

Keywords

DPP-IV inhibitory peptide, ACE inhibitory peptide, in silico, Anti-diabetes, Anti-hypertensive

Abstract

Pyropia vietnamensis is one of the most abundant seaweeds in the Indo-Pacific region.  This study aimed to perform an in silico evaluation of P. vietnamensis proteins as potential precursors of bioactive peptides and to determine the novel peptide in terms of its half maximal inhibitory concentration (IC50) and the stability under controlled laboratory environment (in vitro) towards the dominant biological activity. The proteomic profiles of P. vietnamensis proteins were determined using LC-MS/MS analysis. Next, five proteins were chosen and employed for in silico analysis using the BIOPEP-UWM database. The in vitro characterizations of novel peptide were carried out using a dipeptidyl peptidase-IV (DPP-IV) inhibitor screening assay kit. In silico analysis revealed that DPP-IV and angiotensin-converting enzyme (ACE) inhibitors were the most potential bioactive peptides in P. vietnamensis proteins. Calpain 2, papain, pepsin (pH>2), and stem bromelain were predicted as the enzymes with the most potential to produce DPP-IV and ACE inhibitors. The novel peptides predicted were CFA, ACF, RFPS, DEWG, NYCL, CVPR, and DACF. The synthesized CVPR with an IC50 of 0.66 mg/ml exhibited stability at pH 3-7, 30-50 °C, and resisted gastrointestinal digestion. This study revealed P. vietnamensis proteins could offer health benefits due to the therapeutic potential with sustainable industrial applications on functional foods, nutraceuticals, and pharmaceuticals.  

Abstract 17 | PDF Downloads 12 xml Downloads 0 html Downloads 0

References

Agirbasli Z. and Cavas L. 2017. In silico evaluation of bioactive peptides from the green algae Caulerpa. J. Appl. Phycol. 29 (3): 1635–1646.
Agyei D., Tsopmo A., and Udenigwe CC. 2018. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 410 (15): 3463–3472.
Akbarian M., Khani A., Eghbalpour S., and Uversky V.N. 2022. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 23 (3): 1445.
Awang A., Karim R., and Mitsui T. Proteomic analysis of Theobroma cacao pod husk. 2010. J. Appl. Glycosci. 2010; 57 (4): 245–264.
Baba W.N., Baby B., Mudgil P., Gan C.Y., Vijayan R., and Maqsood S. 2021. Pepsin generated camel whey protein hydrolysates with potential antihypertensive properties: Identification and molecular docking of antihypertensive peptides. LWT. 143: 111135.
Bhatia S., Sharma A.K., De La Cruz C.B., Chaugule B., and Al-Harrasi A. 2021. Nutraceutical, antioxidant, antimicrobial properties of Pyropia vietnamensis (tanaka et Pham-Hong Ho) J.E. Sutherl. et monotilla. Curr. Bioact. Compd. 17(2): 151–164.
Carpentier S.C., Witters E., Laukens K., Deckers P., Swennen R., and Panis B. 2005. Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two‐dimensional gel electrophoresis analysis. Proteomics. 5 (10): 2497–2507.
Cermeño M., Stack J., Tobin P.R., O'Keeffe M.B., Harnedy P.A., Stengel D.B., and FitzGerald R.J. 2019. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food & Function. 10 (6): 3421–3429.
Chin Y.X., Lim P.E., Maggs C.A., Phang S.M., Sharifuddin Y., and Green B.D. 2014. Anti-diabetic potential of selected Malaysian seaweeds. J. Appl. Phycol. 27 (5): 2137–2148.
Cian R.E., Nardo A.E., Garzón A.G., Añon M.C., and Drago S.R. 2022. Identification and in silico study of a novel dipeptidyl peptidase IV inhibitory peptide derived from green seaweed Ulva spp. hydrolysates. LWT. 154: 112738.
Coscueta E.R., Batista P., Gomes J.E., da Silva R., and Pintado M.M. 2022. Screening of novel bioactive peptides from goat casein: In silico to in vitro validation. Int. J. Mol. Sci. 23 (5):2439.
Cotas J., Leandro A., Pacheco D., Gonçalves A.M., and Pereira L. 2020. A comprehensive review of the nutraceutical and therapeutic applications of Red Seaweeds (Rhodophyta). Life. 10 (3): 19.
Dahlén A. D., Dashi G., Maslov I., Attwood M.M., Jonsson J., Trukhan V., and Schiöth H. B. 2022. Trends in Antidiabetic Drug Discovery: FDA approved drugs, new drugs in clinical trials and global sales. Front. Pharmacol. 12: 807548.
Deng Z., Liu Y., Wang J., Wu S., Geng L., Sui Z., and Zhang Q. 2018. Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in spontaneously hypertensive Rats (SHRs). Mar. Drugs 16: 299.
El-Beltagi H.S., Mohamed A.A., Mohamed H.I., Ramadan K.M., Barqawi A.A., and Mansour A.T. 2022. Phytochemical and potential properties of seaweeds and their recent applications: A Review. Mar. Drugs. 20 (6): 342.
Fleury L., Deracinois B., Dugardin C., Nongonierma A. B., FitzGerald R. J., Flahaut C., Cudennec B., and Ravallec R. 2022. In vivo and in vitro comparison of the DPP-IV inhibitory potential of food proteins from different origins after gastrointestinal digestion. Int J Mol Sci. 23 (15): 8365.
Gallego M., Aristoy M.C., and Toldrá F. 2014. Dipeptidyl peptidase IV inhibitory peptides generated in Spanish dry-cured ham. Meat Science. 96 (2): 757–761.
Garcia-Vaquero M., Mora L., and Hayes M. 2019. In vitro and in silico approaches to generating and identifying angiotensin-converting enzyme I inhibitory peptides from green macroalga Ulva lactuca. Mar. Drugs. 17 (4): 204.
Gupta A., Jacobson G.A., Burgess J.R., Jelinek H.F., Nichols D.S., Narkowicz C.K., and Al-Aubaidy H.A. 2018. Citrus bioflavonoids dipeptidyl peptidase-4 inhibition compared with gliptin antidiabetic medications. BBRC. 503 (1): 21–25.
Harnedy P.A., O’Keeffe M.B., and FitzGerald R.J. 2015. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem. 172: 400–406.
Hatanaka T., Kawakami K., and Uraji M. 2014. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity. J Enzyme Inhib Med Chem. 29 (6): 823–828.
Hayes M. and Tiwari B. 2015. Bioactive carbohydrates and peptides in foods: An overview of sources, downstream processing steps and associated bioactivities. Int J Mol Sci. 16 (9): 22485-22508.
Kandemir-Cavas C., Pérez-Sanchez H., Mert-Ozupek N., and Cavas L. 2019. In silico analysis of bioactive peptides in invasive sea grass Halophila stipulacea. Cells. 8 (6): 557.
Kinter M. and Sherman N.E. 2005. Protein sequencing and identification using tandem mass spectrometry. John Wiley & Sons.
Klompong V., Benjakul S., Kantachote D., and Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem. 102 (4): 1317–1327.
Kong X., Zhang L., Song W., Zhang C., Hua Y., Chen Y., and Li X. 2021. Separation, identification and molecular binding mechanism of dipeptidyl peptidase IV inhibitory peptides derived from walnut (Juglans regia L.) protein. Food Chem. 347: 129062.
Liu R., Cheng J., and Wu H. 2019. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A Review. Int J Mol Sci. 20 (3): 463.
Lu Y., Lu P., Wang Y., Fang X., Wu J., and Wang X. 2019. A novel dipeptidyl peptidase IV inhibitory tea peptide improves pancreatic β-cell function and reduces α-cell proliferation in streptozotocin-induced diabetic mice. Int J Mol Sci. 20 (2): 322.
Makkar F. and Chakraborty K. 2016. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from Red Seaweeds Kappaphycus alvarezii and Gracilaria opuntia. Int. J. Food. Prop. 20 (6): 1326–1337.
Minkiewicz P., Iwaniak A., and Darewicz M. 2019. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 20 (23): 5978.
Mu X., Li D., Xiao R., Guan K., Ma Y., Wang R., and Niu T. 2024. Discovery of novel dipeptidyl peptidase-IV inhibitory peptides derived from walnut protein and their bioactivities in vivo and in vitro. Curr. Res. Food Sci. 9: 100893.
Neves A.C., Harnedy P.A., O’Keeffe M.B., Alashi M.A., Aluko R.E., and FitzGerald R.J. 2017. Peptide identification in a salmon gelatin hydrolysate with antihypertensive, dipeptidyl peptidase IV inhibitory and antioxidant activities. Food Res Int. 100: 112–120.
Nongonierma A. B. and FitzGerald R. J. 2013. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food & Function. 4 (12): 1843.
Pei J., Liu Z., Pan D., Zhao Y., Dang Y., and Gao X. 2022. Transport, stability, and in vivo hypoglycemic effect of a broccoli-derived DPP-IV inhibitory peptide VPLVM. J. Agri. Food Chem. 70 (16): 4934–4941.
Peñalver R., Lorenzo J.M., Ros G., Amarowicz R., Pateiro M., and Nieto G. 2020. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs. 18 (6): 301.
Pihlanto A. and Mäkinen S. 2017. The function of renin and the role of food-derived peptides as direct renin inhibitors. Renin-Angiotensin System - Past, Present and Future.
Sharmin K.N., Amiza M.A., Ahmad F., Razali S.A., and Hashim F. 2022. In silico analysis of Gracilaria changii proteins for potential bioactive peptides. IOP Conference Series: Earth Environ. Sci. 967 (1): 012017.
Sultana F., Wahab M. A., Nahiduzzaman M., Mohiuddin M., Iqbal M. Z., Shakil A., Mamun A. A., Khan M. S., Wong L., and Asaduzzaman M. 2023. Seaweed farming for food and nutritional security, climate change mitigation and adaptation, and women empowerment: A Review. Aquaculture and Fisheries. 8 (5): 463–480.
Walsh D.J., Bernard H., Murray B.A., MacDonald J., Pentzien A.K., Wright G.A., Wal J.M., Struthers A.D., Meisel H., and FitzGerald R.J. 2004. In vitro generation and stability of the lactokinin β-lactoglobulin fragment. J Dairy Sci. 87 (11): 3845–3857.
Windarto S., Lee M.C., Nursyam H., and Hsu J.L. 2022. First report of screening of novel angiotensin-I converting enzyme inhibitory peptides derived from the red alga Acrochaetium sp. Mar. Biotechnol. (NY). 24 (5): 882-894.
Xiang X., Lang M., Li Y., Zhao X., Sun H., Jiang W., Ni L., and Song Y. 2021. Purification, identification and molecular mechanism of dipeptidyl peptidase IV inhibitory peptides from discarded shrimp (Penaeus Vannamei) head. J. Chromatogr. B. 1186: 122990.
Zheng L., Xu Q., Lin L., Zeng X.-A., Sun B., and Zhao M. 2019. In vitro metabolic stability of a casein-derived dipeptidyl peptidase-IV (DPP-IV) inhibitory peptide VPYPQ and its controlled release from casein by enzymatic hydrolysis. J. Agri. Food Chem. 67 (38): 10604–10613.