Application of cold plasma, a novel nonthermal method on fruit juices: A review on quality and safety

Main Article Content

Gurveer Kaur
Sandhya
Maninder Kaur
Vimal Challana
Sumandeep Kaur

Keywords

cold-plasma; fruit-juices; quality; microbe; active species; degradation

Abstract

Growing consumer demand for minimally processed foods with high quality and safety standards has gained interest in nonthermal decontamination methods for fruit juices. Cold plasma (CP) has emerged as a promising technology in the food industry, offering numerous advantages, such as safety, versatility, environmental friendliness and efficiency. This review paper provides a comprehensive examination of recent advances in CP application for fruit juice processing, focusing on microbial inactivation and its effect on bioactive components along with the interaction with active plasma species. Additionally, the paper also analyzes variations in operating parame-ters of CP that influence the quality of fruit juices. The data from the existing studies indicated that CP treatment resulted in microbial inactivation ranging from 0.15 to 7.4-log cycles. Additionally, enzymatic activity decreased by up to 54%, antioxidant activity improved by up to 261%, and anthocyanin levels increased by 35%, compared to the control samples. The CP shows promising results in retaining the juice’s physicochemical properties with minimal degradation. However, the scaling up of CP technology commercially is still a challenge. Further experimental studies are required in fruit juice processing for industrial applications to get a better idea for understanding the interactions between plasma active species and juice components.

Abstract 1165 | PDF Downloads 671 XML Downloads 93 HTML Downloads 0

References

Abdel-Naeem, H. H. S., Ebaid, E. M. S. M., Khalel, K. H. M., Imre, K., Morar, A., Herman, V., & El-Nawawi, F. A. M., 2022. Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. LWT 165: 113739. https://doi.org/10.1016/j.lwt.2022.113739
Abedelmaksoud, T. G., Hesarinejad, M. A., & Shokrollahi Yancheshmeh, B., 2022. The effect of cold plasma on the enzymatic activity and quality characteristics of mango pulp. Research and Innovation in Food Science and Technology 10(4): 341-350. https://doi.org/10.22101/JRIFST.2021.247462.1183
Akhtar, J., Abrha, M. G., Teklehaimanot, K., & Gebrekirstos, G., 2022. Cold plasma technology: Fundamentals and effect on quality of meat and its products. Food and Agricultural Immunology 33(1): 451-478. 10.1080/09540105.2022.2095987
Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N., & Rodrigues, S., 2015. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science & Emerging Technologies 32: 127-135. https://doi.org/10.1016/j.ifset.2015.09.001
Andreou, V., Giannoglou, M., Xanthou, M.-Z., Passaras, D., Kokkoris, G., Gogolides, Ε., & Katsaros, G., 2023. Inactivation of pectinmethylesterase in fresh orange juice by cold atmospheric plasma technology: A kinetic study. Innovative Food Science & Emerging Technologies 86: 103361. https://doi.org/10.1016/j.ifset.2023.103361
Andrés-Bello, A., Barreto-Palacios, V., García-Segovia, P., Mir-Bel, J., & Martínez-Monzó, J., 2013. Effect of ph on color and texture of food products. Food Engineering Reviews 5(3): 158-170. 10.1007/s12393-013-9067-2
Basak, J. K., Madhavi, B. G. K., Paudel, B., Kim, N. E., & Kim, H. T., 2022. Prediction of total soluble solids and ph of strawberry fruits using rgb, hsv and hsl colour spaces and machine learning models. Foods 11(14): 2086. https://doi.org/10.3390/foods11142086
Belhora, F., Cottinet, P.-J., Hajjaji, A., Guyomar, D., Mazroui, M. h., Lebrun, L., & Boughaleb, Y., 2013. Optimization of energy harvesting conversion using the hybridization of electrostrictive polymers and electrets. Sensors and Actuators A: Physical 189: 390-398. https://doi.org/10.1016/j.sna.2012.10.032
Bhatkar, N. S., Shirkole, S. S., Mujumdar, A. S., & Thorat, B. N., 2021. Drying of tomatoes and tomato processing waste: A critical review of the quality aspects. Drying Technology 39(11): 1720-1744. 10.1080/07373937.2021.1910832
Blacker, S. M., Creanor, S. L., & Creanor, S., 2011. An in vitro investigation of the initial ph and titratable acidity of a selection of fruit smoothies. Dental Update 38(9): 604-609. https://doi.org/10.12968/denu.2011.38.9.604
CAC, C. A. C. (2005). General standard for fruit juices and nectars. Retrieved from https://www.fao.org/fao-who-codexalimentarius/sh-proxy/jp/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B247-2005%252FCXS_247e.pdf
Campelo, P. H., Alves Filho, E. G., Silva, L. M. A., de Brito, E. S., Rodrigues, S., & Fernandes, F. A. N., 2020. Modulation of aroma and flavor using dielectric barrier discharge plasma technology in a juice rich in terpenes and sesquiterpenes. LWT 130: 109644. https://doi.org/10.1016/j.lwt.2020.109644
Castro, D. R. G., Mar, J. M., da Silva, L. S., da Silva, K. A., Sanches, E. A., de Araújo Bezerra, J., Rodrigues, S., Fernandes, F. A. N., & Campelo, P. H., 2020. Improvement of the bioavailability of amazonian juices rich in bioactive compounds using glow plasma technique. Food and Bioprocess Technology 13(4): 670-679. 10.1007/s11947-020-02427-8
Chen, C., Liu, C., Jiang, A., Guan, Q., Sun, X., Liu, S., Hao, K., & Hu, W., 2019. The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food and Bioprocess Technology 12(11): 1842-1851. 10.1007/s11947-019-02331-w
Chutia, H., Kalita, D., Mahanta, C. L., Ojah, N., & Choudhury, A. J., 2019. Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. LWT 101: 625-629. https://doi.org/10.1016/j.lwt.2018.11.071
Chutia, H., Mahanta, C. L., Ojah, N., & Choudhury, A. J., 2020. Fuzzy logic approach for optimization of blended beverage of cold plasma treated tcw and orange juice. Journal of Food Measurement and Characterization 14(4): 1926-1938. 10.1007/s11694-020-00440-1
Dantas, A. M., Batista, J. D. F., dos Santos Lima, M., Fernandes, F. A. N., Rodrigues, S., Magnani, M., & Borges, G. d. S. C., 2021. Effect of cold plasma on açai pulp: Enzymatic activity, color and bioaccessibility of phenolic compounds. LWT 149: 111883. https://doi.org/10.1016/j.lwt.2021.111883
Dasan, B. G., & Boyaci, I. H., 2018. Effect of cold atmospheric plasma on inactivation of escherichia coli and physicochemical properties of apple, orange, tomato juices, and sour cherry nectar. Food and Bioprocess Technology 11(2): 334-343. 10.1007/s11947-017-2014-0
de Castro, D. R. G., Mar, J. M., da Silva, L. S., da Silva, K. A., Sanches, E. A., de Araújo Bezerra, J., Rodrigues, S., Fernandes, F. A. N., & Campelo, P. H., 2020. Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Research International 131: 109044. https://doi.org/10.1016/j.foodres.2020.109044
Ding, H., Wang, T., Sun, Y., Zhang, Y., Wei, J., Cai, R., Guo, C., Yuan, Y., & Yue, T., 2023. Role and mechanism of cold plasma in inactivating alicyclobacillus acidoterrestris in apple juice. Foods 12(7): 1531. https://doi.org/10.3390/foods12071531
Ding, H., Wang, T., Zhang, Y., Guo, C., Shi, K., Kurtovic, I., Yuan, Y., & Yue, T., 2024. Efficacy, kinetics, inactivation mechanism and application of cold plasma in inactivating alicyclobacillus acidoterrestris spores. International Journal of Food Microbiology 423: 110830. https://doi.org/10.1016/j.ijfoodmicro.2024.110830
El-Sheekh, M. M., Abd Al-Halim, M. A., & Mohammed, S. A., 2023. Algae processing by plasma discharge technology: A review. Algal Research 70: 102983. https://doi.org/10.1016/j.algal.2023.102983
Emily. (2024). Advantages of rf plasma: Exploring benefits. Retrieved from https://vactechniche.com/rf-plasma-advantages/
Farias, T. R. B., Alves Filho, E. G., Campelo, P. H., Rodrigues, S., & Fernandes, F. A. N., 2023. Influence of atmospheric and vacuum plasma processing on the organic composition of araça-boi (eugenia stipitata) juice. Food Chemistry Advances 3: 100345. https://doi.org/10.1016/j.focha.2023.100345
Farias, T. R. B., Alves Filho, E. G., Silva, L. M. A., De Brito, E. S., Rodrigues, S., & Fernandes, F. A. N., 2021. Nmr evaluation of apple cubes and apple juice composition subjected to two cold plasma technologies. LWT 150: 112062. https://doi.org/10.1016/j.lwt.2021.112062
Fernandes, F. A. N., & Rodrigues, S., 2021. Cold plasma processing on fruits and fruit juices: A review on the effects of plasma on nutritional quality. Processes 9(12): 2098. https://doi.org/10.3390/pr9122098
Fernandes, F. A. N., Santos, V. O., & Rodrigues, S., 2019. Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Research International 115: 16-22. https://doi.org/10.1016/j.foodres.2018.07.042
Gabriel, A. A., Aba, R. P. M., Tayamora, D. J. L., Colambo, J. C. R., Siringan, M. A. T., Rosario, L. M. D., Tumlos, R. B., & Ramos, H. J., 2016. Reference organism selection for microwave atmospheric pressure plasma jet treatment of young coconut liquid endosperm. Food Control 69: 74-82. https://doi.org/10.1016/j.foodcont.2016.04.034
Gan, Z., Feng, X., Hou, Y., Sun, A., & Wang, R., 2021. Cold plasma jet with dielectric barrier configuration: Investigating its effect on the cell membrane of e. Coli and s. Cerevisiae and its impact on the quality of chokeberry juice. LWT 136: 110223. https://doi.org/10.1016/j.lwt.2020.110223
Garg, R., & Maheshwari, S., 2023. Cold plasma technique its current status, application and future trends in food industry. EPH-International Journal of Applied Science 9(1): 11-17. https://doi.org/10.53555/eijas.v9i1.152
Guerrero-Beltr·n, J. A., & Barbosa-C·novas, G. V., 2004. Advantages and limitations on processing foods by uv light. Food Science and Technology International 10(3): 137-147. 10.1177/1082013204044359
Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P., 2016. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for escherichia coli and staphylococcus aureus. Applied and Environmental Microbiology 82(2): 450-458. 10.1128/AEM.02660-15
Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V., 2016. Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry 190: 665-672. https://doi.org/10.1016/j.foodchem.2015.05.135
Hosseini, S. M., Hosseinzadeh Samani, B., Rostami, S., & Lorigooini, Z., 2021. Design and characterisation of jet cold atmospheric pressure plasma and its effect on escherichia coli, colour, ph, and bioactive compounds of sour cherry juice. International Journal of Food Science & Technology 56(10): 4883-4892. https://doi.org/10.1111/ijfs.15220
Hosseini, S. M., Rostami, S., Hosseinzadeh Samani, B., & Lorigooini, Z., 2020. The effect of atmospheric pressure cold plasma on the inactivation of escherichia coli in sour cherry juice and its qualitative properties. Food Science & Nutrition 8(2): 870-883. https://doi.org/10.1002/fsn3.1364
Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A., 2019. Effect of cold plasma on blueberry juice quality. Food Chemistry 290: 79-86. https://doi.org/10.1016/j.foodchem.2019.03.123
Hu, Y., Zhang, W., Han, J., Zhu, H., & Yang, Y. (2023). Design and study of a large-scale microwave plasma torch with four ports. Processes, 11(9). doi:10.3390/pr11092589
Illera, A. E., Chaple, S., Sanz, M. T., Ng, S., Lu, P., Jones, J., Carey, E., & Bourke, P., 2019. Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X 3: 100049. https://doi.org/10.1016/j.fochx.2019.100049
Jiang, H., Lin, Q., Shi, W., Yu, X., & Wang, S., 2022. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Frontiers in Nutrition 9: 1015980. https://doi.org/10.3389/fnut.2022.1015980
Karastogianni, S., Girousi, S., & Sotiropoulos, S., 2016. Ph: Principles and measurement. Encyclopedia of Food and Health 4: 333-338.
Khalili, R., Ayoobian, N., Jafarpour, M., & Shirani, B., 2017. The effect of gamma irradiation on the properties of cucumber. J Food Sci Technol 54(13): 4277-4283. 10.1007/s13197-017-2899-7
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M., 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1): 1361779. 10.1080/16546628.2017.1361779
KM, S. S. K., Sujatha, G., & Narayanan, R., 2023. Effect of cold plasma on the quality parameters of custard apple juice milk beverage. Indian Journal of Dairy Science 76(4).
Kovačević, D. B., Gajdoš Kljusurić, J., Putnik, P., Vukušić, T., Herceg, Z., & Dragović-Uzelac, V., 2016. Stability of polyphenols in chokeberry juice treated with gas phase plasma. Food Chemistry 212: 323-331. https://doi.org/10.1016/j.foodchem.2016.05.192
Kovačević, D. B., Putnik, P., Dragović-Uzelac, V., Pedisić, S., Režek Jambrak, A., & Herceg, Z., 2016. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chemistry 190: 317-323. https://doi.org/10.1016/j.foodchem.2015.05.099
Leite, A. K. F., Fonteles, T. V., B.A.R. Miguel, T., Silvestre da Silva, G., Sousa de Brito, E., Alves Filho, E. G., Fernandes, F. A. N., & Rodrigues, S., 2021. Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin c bioaccessibility. Food Research International 147: 110479. https://doi.org/10.1016/j.foodres.2021.110479
Li, J.-L., Sun, D.-W., & Cheng, J.-H., 2016. Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: A review. Comprehensive Reviews in Food Science and Food Safety 15(5): 897-911. https://doi.org/10.1111/1541-4337.12217
Liao, X., Li, J., Muhammad, A. I., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T., 2018. Application of a dielectric barrier discharge atmospheric cold plasma (dbd-acp) for eshcerichia coli inactivation in apple juice. Journal of Food Science 83(2): 401-408. https://doi.org/10.1111/1750-3841.14045
Liu, Z., Zhao, W., Zhang, Q., Gao, G., & Meng, Y., 2021. Effect of cold plasma treatment on sterilizing rate and quality of kiwi turbid juice. Journal of Food Process Engineering 44(6): e13711. https://doi.org/10.1111/jfpe.13711
Lokesh, A., 2024. Cold plasma technology and its applications in food industry. 10.51470/bca.2023.23.S1.0000
Mahanta, S., Bock, J., Mense, A., Kirk-Bradley, N., Awika, J., & Moore, J. M., 2024. Atmospheric cold plasma as an alternative to chlorination in soft wheat flour to prepare high-ratio cakes. Foods 13(15): 2366.
Mahnot, N. K., Mahanta, C. L., Keener, K. M., & Misra, N. N., 2019. Strategy to achieve a 5-log salmonella inactivation in tender coconut water using high voltage atmospheric cold plasma (hvacp). Food Chemistry 284: 303-311. https://doi.org/10.1016/j.foodchem.2019.01.084
Makari, M., Hojjati, M., Shahbazi, S., & Askari, H., 2021. Elimination of aspergillus flavus from pistachio nuts with dielectric barrier discharge (dbd) cold plasma and its impacts on biochemical indices. Journal of Food Quality 2021(1): 9968711. https://doi.org/10.1155/2021/9968711
Manzoor, M. F., Ahmad, N., Ahmed, Z., Siddique, R., Mehmood, A., Usman, M., & Zeng, X.-A., 2020. Effect of dielectric barrier discharge plasma, ultra-sonication, and thermal processing on the rheological and functional properties of sugarcane juice. Journal of Food Science 85(11): 3823-3832. https://doi.org/10.1111/1750-3841.15498
Medvecká, V., Mošovská, S., Mikulajová, A., & Zahoranová, A., 2024. Effect of atmospheric pressure cold plasma on the physiochemical characteristics and fourier transform infrared spectroscopy analysis of hazelnuts and peanuts. International Journal of Food Engineering 20(1): 27-35. doi:10.1515/ijfe-2023-0077
Mehta, D., & Yadav, S. K., 2019. Impact of atmospheric non-thermal plasma and hydrothermal treatment on bioactive compounds and microbial inactivation of strawberry juice: A hurdle technology approach. Food Science and Technology International 26(1): 3-10. 10.1177/1082013219865360
Motta, J., Freitas, B. C., Almeida, A., Martins, G., & Borges, S., 2023. Use of enzymes in the food industry: A review. Food Science and Technology 43. 10.1590/fst.106222
Nwabor, O. F., Onyeaka, H., Miri, T., Obileke, K., Anumudu, C., & Hart, A., 2022. A cold plasma technology for ensuring the microbiological safety and quality of foods. Food Engineering Reviews 14(4): 535-554. 10.1007/s12393-022-09316-0
Okubo, M., & Kuwahara, T. (2020). Chapter 3 - principle and design of emission control systems. In M. Okubo & T. Kuwahara (Eds.), New technologies for emission control in marine diesel engines (pp. 53-143): Butterworth-Heinemann.
Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N., & Rodrigues, S., 2019. Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology 12(1): 110-121. 10.1007/s11947-018-2197-z
Palabiyik, I., Kopuk, B., Konar, N., & Toker, O. S., 2023. Investigation of cold plasma technique as an alternative to conventional alkalization of cocoa powders. Innovative Food Science & Emerging Technologies 88: 103440. https://doi.org/10.1016/j.ifset.2023.103440
Pankaj, S., Wan, Z., Colonna, W., & Keener, K. M., 2017. Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture 97(12): 4016-4021. https://doi.org/10.1002/jsfa.8268
Pankaj, S., Wan, Z., Colonna, W. J., & Keener, K., 2017. Effect of high voltage atmospheric cold plasma on white grape juice quality. Journal of the Science of Food and Agriculture 97. 10.1002/jsfa.8268
Pataro, G., & Ferrari, G. (2020). 13 - limitations of pulsed electric field utilization in food industry. In F. J. Barba, O. Parniakov, & A. Wiktor (Eds.), Pulsed electric fields to obtain healthier and sustainable food for tomorrow (pp. 283-310): Academic Press.
Pipliya, S., Kumar, S., & Srivastav, P. P., 2022. Inactivation kinetics of polyphenol oxidase and peroxidase in pineapple juice by dielectric barrier discharge plasma technology. Innovative Food Science & Emerging Technologies 80: 103081. https://doi.org/10.1016/j.ifset.2022.103081
Porto, E. C. M., de Brito, E. S., Rodrigues, S., & Fernandes, F. A. N., 2023. Effect of atmospheric cold plasma on the aroma of pineapple juice: Improving fresh and fruity notes and reducing undesired pungent and sulfurous aromas. Processes 11(8): 2303.
Puligundla, P., & Mok, C. (2020). Chapter 11 - microwave- and radio-frequency-powered cold plasma applications for food safety and preservation. In D. Bermudez-Aguirre (Ed.), Advances in cold plasma applications for food safety and preservation (pp. 309-329): Academic Press.
Rao, W., Li, Y., Dhaliwal, H., Feng, M., Xiang, Q., Roopesh, M. S., Pan, D., & Du, L., 2023. The application of cold plasma technology in low-moisture foods. Food Engineering Reviews 15(1): 86-112. 10.1007/s12393-022-09329-9
Rathore, V., & Nema, S. K., 2022. A comparative study of dielectric barrier discharge plasma device and plasma jet to generate plasma activated water and post-discharge trapping of reactive species. Physics of Plasmas 29(3). https://doi.org/10.1063/5.0078823
Rød, S. K., Hansen, F., Leipold, F., & Knøchel, S., 2012. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of listeria innocua and changes in product quality. Food Microbiology 30(1): 233-238. https://doi.org/10.1016/j.fm.2011.12.018
Rodrigues, S., & Fernandes, F. A. N., 2023. Effect of dielectric barrier discharge plasma treatment in pasteurized orange juice: Changes in volatile composition, aroma, and mitigation of off-flavors. Food and Bioprocess Technology 16(4): 930-939. 10.1007/s11947-022-02976-0
Rodríguez, Ó., Gomes, W. F., Rodrigues, S., & Fernandes, F. A. N., 2017. Effect of indirect cold plasma treatment on cashew apple juice (anacardium occidentale l.). LWT 84: 457-463. https://doi.org/10.1016/j.lwt.2017.06.010
Rodriguez, Ó., Rodrigues, S., & Fernandes, F. A. N., 2022. Effect of glow discharge plasma technology on the phenolic content and antioxidant capacity of four tropical juices with different phenolic composition. Journal of Food Processing and Preservation 46(1): e16110. https://doi.org/10.1111/jfpp.16110
Rowan, N. J., Espie, S., Harrower, J., Anderson, J. G., Marsili, L., & Macgregor, S. J., 2007. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water. Journal of Food Protection 70(12): 2805-2810. 10.4315/0362-028X-70.12.2805
Sahoo, S., Sahoo, G., Jeong, S. M., & Rout, C. S., 2022. A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. Journal of Energy Storage 53: 105212. https://doi.org/10.1016/j.est.2022.105212
Sarangapani, C., O'Toole, G., Cullen, P. J., & Bourke, P., 2017. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 44: 235-241. https://doi.org/10.1016/j.ifset.2017.02.012
Sarangapani, C., Patange, A., Bourke, P., Keener, K., & Cullen, P. J., 2018. Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology 9(Volume 9, 2018): 609-629. https://doi.org/10.1146/annurev-food-030117-012517
Shi, X. M., Zhang, G. J., Wu, X. L., Li, Y. X., Ma, Y., & Shao, X. J., 2011. Effect of low-temperature plasma on microorganism inactivation and quality of freshly squeezed orange juice. IEEE Transactions on Plasma Science 39(7): 1591-1597. 10.1109/TPS.2011.2142012
Shrestha, R., Subedi, D., Gurung, J., & Wong, C., 2016. Generation, characterization and application of atmospheric pressure plasma jet. Sains Malaysiana 45: 1689-1696. https://doi.org/10.1155/2020/9247642
Sohbatzadeh, F., Yazdanshenas, H., Soltani, A.-H., & Shabannejad, A., 2021. An innovative strategy to rapidly inactivate 8.2-log enterococcus faecalis in fresh pineapple juice using cold atmospheric plasma. Scientific Reports 11(1): 16010. 10.1038/s41598-021-95452-2
Surowsky, B., Fröhling, A., Gottschalk, N., Schlüter, O., & Knorr, D., 2014. Impact of cold plasma on citrobacter freundii in apple juice: Inactivation kinetics and mechanisms. International Journal of Food Microbiology 174: 63-71. https://doi.org/10.1016/j.ijfoodmicro.2013.12.031
Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M. A. E., & Stirkė, A., 2022. Pulsed electric field: Fundamentals and effects on the structural and techno-functional properties of dairy and plant proteins. Foods 11(11). 10.3390/foods11111556
Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P., 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 33: 225-233. https://doi.org/10.1016/j.ifset.2015.12.022
Tappi, S., Ragni, L., Tylewicz, U., Romani, S., Ramazzina, I., & Rocculi, P., 2019. Browning response of fresh-cut apples of different cultivars to cold gas plasma treatment. Innovative Food Science & Emerging Technologies 53: 56-62. https://doi.org/10.1016/j.ifset.2017.08.005
Tiwari, S., Caiola, A., Bai, X., Lalsare, A., & Hu, J., 2020. Microwave plasma-enhanced and microwave heated chemical reactions. Plasma Chemistry and Plasma Processing 40(1): 1-23. 10.1007/s11090-019-10040-7
Tschang, C.-Y., Bergert, R., Mitic, S., & Thoma, M., 2020. Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma-treated water. Journal of Physics D Applied Physics. 10.1088/1361-6463/ab78d6
Tyl, C., & Sadler, G. D. (2017). Ph and titratable acidity. In S. S. Nielsen (Ed.), Food analysis (pp. 389-406). Cham: Springer International Publishing.
Ukuku, D. O., Niemira, B. A., & Ukanalis, J., 2019. Nisin-based antimircobial combination with cold plasma treatment inactivate listeria monocytogenes on granny smith apples. LWT 104: 120-127. https://doi.org/10.1016/j.lwt.2018.12.049
Unnisa, S. A., & Hassanpour, M., 2017. Development circumstances of four recycling industries (used motor oil, acidic sludge, plastic wastes and blown bitumen) in the world. Renewable and Sustainable Energy Reviews 72: 605-624. https://doi.org/10.1016/j.rser.2017.01.109
Viegas, P., Slikboer, E., Bonaventura, Z., Guaitella, O., Sobota, A., & Bourdon, A., 2022. Physics of plasma jets and interaction with surfaces: Review on modelling and experiments. Plasma Sources Science and Technology 31(5): 053001. 10.1088/1361-6595/ac61a9
Wang, L.-H., Yan, B., Wen, Q.-H., Wei, G.-F., Huang, Y., Zeng, X.-A., Ali, M., & Aadil, R. M., 2023. Proteomics analysis reveals the inactivation mechanisms of alicyclobacillus acidoterrestris spores by atmospheric cold plasma. International Journal of Food Science & Technology 58(12): 6243-6252. https://doi.org/10.1111/ijfs.16723
Wang, Y., Wang, Z., Zhu, X., Yuan, Y., Gao, Z., & Yue, T., 2020. Application of electrical discharge plasma on the inactivation of zygosaccharomyces rouxii in apple juice. LWT 121: 108974. https://doi.org/10.1016/j.lwt.2019.108974
Warne, G. R., Williams, P. M., Pho, H. Q., Tran, N. N., Hessel, V., & Fisk, I. D., 2021. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. Journal of Food Science 86(9): 3762-3777. https://doi.org/10.1111/1750-3841.15856
Watrelot, A., Savits, J., & Moroney, M. (2020). Estimating grape maturity by total soluable solids. Retrieved from https://store.extension.iastate.edu/product/16075
Xu, L., Garner, A. L., Tao, B., & Keener, K. M., 2017. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10(10): 1778-1791. 10.1007/s11947-017-1947-7
Zhao, S.-Q., Chen, L., Yan, B., Wang, L.-H., Zeng, X.-A., & Aadil, R. M., 2023. Inactivation of alicyclobacillus acidoterrestris vegetative cells and spores induced by atmospheric cold plasma. Innovative Food Science & Emerging Technologies 89: 103461. https://doi.org/10.1016/j.ifset.2023.103461