Extraction, characterization, and impact of Tartary buckwheat husk dietary fiber on metabolic functions and gut microbiota composition in obese mice
Main Article Content
Keywords
Tartary buckwheat dietary fiber (TBDF); high-fat diet; in vivo lipid reduction; gut microbiota
Abstract
Tartary buckwheat dietary fiber (TBDF) was extracted from Tartary buckwheat husks via enzymatic hydrolysis, and the extraction process was optimized by response surface methodology. The optimal conditions were as follows: pH of 4.5, 16% enzyme concentration, and 10.5-h hydrolysis. To study its effects on metabolic health, different TBDF concentrations were added to mice’s drinking water for 5 weeks. Results showed that TBDF significantly inhibited weight gain in obese mice, reduced liver index and fat-to-body ratio, alleviated hepatic steatosis, and prevented excessive fat accumulation. Higher-concentration TBDF had more hypoglycemic effects. After the intervention, Illumina MiSeq high-throughput sequencing was used to analyze gut microbiota. Comparing fecal samples from four groups, TBDF supplementation was found to enrich gut microbiota, increasing the relative abundance of Bacteroidetes. At the genus level, beneficial bacteria, such as Roseburia, Enterococcus, and Lactobacillus, were promoted. In conclusion, TBDF improves metabolic parameters and gut microbiota, offering a new dietary fiber-based strategy for obesity and metabolic disorders.
References
Abdullah, Y, Schneider, B and Petersen, M., 2008. Occurrence of rosmarinic acid, chlorogenic acid and rutin in Marantaceae species. Phytochemistry Letters. 1(4): 199–203. https://doi.org/10.1016/j.phytol.2008.09.010
Abeyrathne, E.D.N.S., Nam, K., Huang, X. and Ahn, D.U., 2022. Plant-and animal-based antioxidants’ structure, efficacy, mechanisms, and applications: a review. Antioxidants. 11(5): 1025. https://doi.org/10.3390/antiox11051025
Abubacker, M.N. and Deepalakshmi, T., 2013. In vitro antifungal potentials of bioactive compound Methyl Ester of hexadecanoic acid isolated from Annona muricata Linn. (Annonaceae) Leaves. Biosciences Biotechnology Research Asia. 10(2): 879–884. https://doi.org/10.13005/bbra/1211
Adeoye-Isijola, M.O., Olajuyigbe, O.O., Jonathan, S.G. and Coopoosamy, R.M., 2018. Bioactive compounds in ethanol extract of lentinus squarrosulus mont — a Nigerian medicinal macrofungus. African Journal of Traditional, Complementary and Alternative Medicines. 15(2): 42–50. https://doi.org/10.21010/ajtcam.v15i2.6
https://doi.org/10.21010/ajtcamv15i2.6
Aguirre, M.R., Tomás, C.G., Huamán, M.J., Galarreta, D.H., Ccaccia, C.A., 2010. Separación, identificación y cuantificación de taninos de la Calathea lutea “bijao.” Revista Peruana de Química e Ingeniería Química. 13(1): 64-66.
Ahwan, A., Suwarni, A., Ariastuti, R., Hafidz, R. and Enjelina, S.M., 2024. Effect of total phenolic and total flavonoid levels on the antioxidant power of water extract, ethanol and chloroform of green tea leaves (Camellia Sinensis L). Medical Sains: Jurnal Ilmiah Kefarmasian. 9(1): 17–28. https://doi.org/10.37874/ms.v9i1.940
Alam, P., Alam, P., Sharaf-Eldin, M.A. and Alqarni, M.H., 2020. Simultaneous identification of rutin, chlorogenic acid, and gallic acid in Moringa oleifera by densitometric high-performance thin-layer chromatography method. Journal of Planar Chromatography – Modern TLC. 33(1): 27–32. https://doi.org/10.1007/s00764-019-00002-2
Alara, O.R. and Abdurahman, N.H., 2019. Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of Food Science and Technology. 56(2): 580–588. https://doi.org/10.1007/s13197-018-3512-4
Alara, O.R., Abdurahman, N.H. and Ukaegbu, C.I., 2018. Soxhlet extraction of phenolic compounds from Vernonia cinerea leaves and its antioxidant activity. Journal of Applied Research on Medicinal and Aromatic Plants. 11: 12–7. https://doi.org/10.1016/j.jarmap.2018.07.003
Ali, T. and Ali, J., 2020. Factors affecting consumers' willingness to pay for healthy and wellness food products. Journal of Agriculture and Food Research. 2: 100076. https://doi.org/10.1016/j.jafr.2020.100076
Al-Tameme, H.J., Hameed, I.H., Idan, S.A. and Hadi, M.Y., 2015. Biochemical analysis of Origanum vulgare seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy. 7(9): 221–237. https://doi.org/10.5897/JPP2015.0362
Apagüeño Arévalo and Tamani Guerra, 2020. Estudio toxicológico y actividad antibacteriana de hojas de Calathea lutea. Master's thesis. Universidad Nacional de la Amazonia Peruana, Perú.
Aree, T., 2019. Understanding structures and thermodynamics of β-cyclodextrin encapsulation of chlorogenic, caffeic and quinic acids: implications for enriching antioxidant capacity and masking bitterness in coffee. Food Chemistry. 293: 550–560. https://doi.org/10.1016/j.foodchem.2019.04.084
Asuquo, E.G. and Udobi, C.E., 2016. Antibacterial and toxicity studies of the ethanol extract of Musa paradisiaca leaf. Cogent Biology. 2(1): 1219248. https://doi.org/10.1080/23312025.2016.1219248
Athanasiadis, V., Chatzimitakos, T., Mantiniotou, M., Kalompatsios, D., Kotsou, K., Makrygiannis, I., Bozinou, E. and Lalas, SI., 2024. Optimization of Four Different Rosemary Extraction Techniques Using Plackett–Burman Design and Comparison of Their Antioxidant Compounds. International Journal of Molecular Sciences. 25(14): 7708. https://doi.org/10.3390/ijms25147708
Attallah, N., Negm, W., Elekhnawy, E., Elmongy, E., Altwaijry, N., El-Haroun, H. and El-Sherbeni, S., 2021. Elucidation of phytochemical content of Cupressus macrocarpa leaves: in vitro and in vivo antibacterial effect against methicillin-resistant Staphylococcus aureus clinical isolates. Antibiotics. 10(8): 890. https://doi.org/10.3390/antibiotics10080890
Ayodeji, O.I., Adeleye, O., Dada, O., Adeyemi, O. and Anyasor, G.N., 2016. Phytochemical constituent and antioxidant activity of Thaumatococcus daniellii Benn (Benth.) leaves (food wrapper). International Journal of Pharmacology, Phytochemistry and Ethnomedicine. 2: 55–61. https://doi.org/10.18052/www.scipress.com/IJPPE.2.55
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A. Sahena. F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N. and Omar, A.K.M., 2013.Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering. 117(4): 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Badr, M., Taktak, N. and Badawy, M., 2022. Comparison of the antimicrobial and antioxidant activities of tea tree (Melaleuca alternifolia) oil and its main component terpinen-4-ol with their nanoemulsions. Egypt Journal of Chemistry. 66(2): 111-120. https://doi.org/10.21608/ejchem.2022.131758.5808
Ballester, P., Cerdá, B., Arcusa, R., García-Muñoz, A.M., Marhuenda, J. and Zafrilla, P., 2023. Antioxidant activity in extracts from Zingiberaceae family: cardamom, turmeric, and ginger. Molecules. 28(10): 4024. https://doi.org/10.3390/molecules28104024
Bayram, I. and Decker, E.A., 2023. Underlying mechanisms of synergistic antioxidant interactions during lipid oxidation. Trends in Food Science & Technology. 133: 219–230. https://doi.org/10.1016/j.tifs.2023.02.003
Belkacem, N., Khettal, B., Hudaib, M., Bustanji, Y., Abu-Irmaileh, B., Amrine and C.S.M., 2021. Antioxidant, antibacterial, and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. European Journal of Integrative Medicine. 42: 101292. https://doi.org/10.1016/j.eujim.2021.101292
Bensid, A., El Abed, N., Houicher, A., Regenstein, J.M. and Özogul, F., 2022. Antioxidant and antimicrobial preservatives: properties, mechanism of action and applications in food – a review. Critical Reviews in Food Science and Nutrition. 62(11): 2985–3001. https://doi.org/10.1080/10408398.2020.1862046
Beya, M.M., Netzel, M.E., Sultanbawa, Y., Smyth, H. and Hoffman, L.C., 2021. Plant-based phenolic molecules as natural preservatives in comminuted meats: a review. Antioxidants. 10(2): 263. https://doi.org/10.3390/antiox10020263
Bhalla, N., Ingle, N., Patri, S.V. and Haranath, D., 2021. Phytochemical analysis of Moringa oleifera leaves extracts by GC-MS and free radical scavenging potency for industrial applications. Saudi Journal of Biological Sciences. 28(12): 6915–6928. https://doi.org/10.1016/j.sjbs.2021.07.075
Bhuyan, D.J., Van Vuong, Q., Chalmers, A.C., van Altena, I.A., Bowyer, M.C. and Scarlett, C.J., 2015. Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Industrial Crops and Products. 69: 290–299. https://doi.org/10.1016/j.indcrop.2015.02.044
Biniari, K., Xenaki, M., Daskalakis, I., Rusjan, D., Bouza, D. and Stavrakaki, M., 2020. Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Food Chemistry. 307: 125518. https://doi.org/10.1016/j.foodchem.2019.125518
Bouzayani, B., Koubaa, I., Frikha, D., Samet, S., Ben Y.A., Chawech, R., Maalej, S., Allouche N. and Mezghani R., 2022. Spectrometric analysis, phytoconstituents isolation and evaluation of in vitro antioxidant and antimicrobial activities of Tunisian Cistanche violacea (Desf). Chemical Papers. 76(5): 3031–3050. https://doi.org/10.1007/s11696-022-02082-7
Brand-Williams, W., Cuvelier, M.E. and Berset, C., 1995. Use of a free radical method to evaluate antioxidant activity. Food Science and Technology. 28(1): 25–30.
Calderón, M.M. and Mancera, M., 2020. [ Improvement of the transformation processes of the natural bijao leaf (Calathea lutea) packaging, as a contribution to the sustainability of the traditional Veleño sandwich agri-food system]. Undergraduate thesis, Corporación Universitaria Minuto Dios, Colombia. Spanish
Castro, J., Rivera, D. and Franco, L.A., 2019. Topical anti-inflammatory activity in TPA-induced mouse ear edema model and in vitro antibacterial properties of Cordia alba flowers. Journal of Pharmaceutical Investigation. 49(3): 331–336. https://doi.org/10.1007/s40005-018-00421-z
Chandran, S., 2020. Comparative Evaluation and Determination of Anti-Oxidant and Anti-Inflammatory Properties of Calathea lutea in Different Solvent and Drying Method. Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia.
Chau, T.P., Muthusamy, M., Chinnathambi, A., Alahmadi, T.A. and Kuppusamy, S., 2023. Optimization of extraction and quantification of flavonoids from Averrhoa bilimbi fruits using RP-HPLC and its correlation between total flavonoids content against antimicrobial activity. Applied Nanosciences. 13(2): 1293–1300. https://doi.org/10.1007/s13204-021-02020-1
Chaves, N., Santiago, A. and Alías, J.C., 2020. Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidants. 9(1): 76. https://doi.org/10.3390/antiox9010076
Chelliah, R. Ramakrishnan, S. and Antony, U., 2017. Nutritional quality of Moringa oleifera for its bioactivity and antibacterial properties. International Food Research Journal. 24(2): 825.
Chen, X., Wu, X., Liu, G., Wang, Q., Itenberg, S., Ouyang, W., Song, M., Dixon, W., Cao, Y. and Xiao, H., 2022. Structure analysis of ethyl ferulate from Rubus corchorifolius L.f. leaves and its inhibitory effects on HepG2 liver cancer cells. Food Bioscience. 45: 101340. https://doi.org/10.1016/j.fbio.2021.101340
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N. and Kim, C.K., 2020. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports. 10(1): 2611. https://doi.org/10.1038/s41598-020-59451-z
Chmiel, M. and Stompor-Gorący, M., 2022. The spectrum of pharmacological actions of syringetin and its natural derivatives—a summary review. Nutrients. 14(23): 5157. https://doi.org/10.3390/nu14235157
Choi, H.S., 2005. Characteristic odor components of kumquat (Fortunella japonica Swingle) peel oil. Journal of Agricultural and Food Chemistry 53(5): 1642–1647. https://doi.org/10.1021/jf040324x
Cristians, S., Bye, R., Navarrete, A. and Mata, R., 2013. Gastroprotective effect of Hintonia latiflora and Hintonia standleyana aqueous extracts and compounds. Journal of Ethnopharmacology. 145(2): 530–535. https://doi.org/10.1016/j.jep.2012.11.025
Da Farmacopeia, C., 2019. “Ácido esteárico IF016-00”. 6. Ed. Farmacopeia Brasileira, Brazil. http://bibliotecadigital.anvisa.ibict.br/jspui/handle/anvisa/728
Da Silva, B.D., Bernardes, P.C., Pinheiro, P.F., Fantuzzi, E. and Roberto, C.D., 2021. Chemical composition, extraction sources and action mechanisms of essential oils: natural preservative and limitations of use in meat products. Meat Science. 176: 108463. https://doi.org/10.1016/j.meatsci.2021.108463
Daud, N.M., Putra, N.R., Jamaludin, R., Norodin, N.S.M., Sarkawi, N.S., Hamzah, M.H.S., Nasir, H.M., Abang, D.N., Che, M.A. and Salleh, L.M., 2022. Valorisation of plant seed as natural bioactive compounds by various extraction methods: a review. Trends in Food Science & Technology. 119: 201–214. https://doi.org/10.1016/j.tifs.2021.12.010
Dehimat, A., Azizi, I., Barragan-Montero, V. and Khettal, B., 2021. Cytotoxicity and antioxidant activities of leaf extracts of Varthemia sericea (Batt. et Trab.) Diels. European Journal of Integrative Medicine. 44: 101338. https://doi.org/10.1016/j.eujim.2021.101338
Del-Toro-Sánchez, C.L., Bautista-Bautista, N., Blasco-Cabal, J.L., Gonzalez-Ávila, M., Gutiérrez-Lomelí, M. and Arriaga-Alba, M., 2014. Antimutagenicity of methanolic extracts from Anemopsis californica concerning their antioxidant activity. Evidence-Based Complementary and Alternative Medicine. 2014: 273878. https://doi.org/10.1155/2014/273878
Dhibi, M., Amri, Z., Bhouri, A.M., Hammami, S, Hammami, M., 2022. Comparative study of the phenolic profile and antioxidant activities of Moringa (Moringa oleifera Lam.) and Jujube (Ziziphus Lotus Linn.) leaf extracts and their protective effects in frying stability of corn oil. Measurement: Food. 7: 100045. https://doi.org/10.1016/j.meafoo.2022.100045
Díaz-Maroto, M.C., Díaz-Maroto, H.I.J., Sanchéz-Palomo, E. and Pérez-Coello, M.S., 2005. Volatile components and key odorants of Fennel (Foeniculum vulgare Mill.) and Thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation− extraction and supercritical fluid extraction. Journal of Agricultural and Food Chemistry. 53(13): 5385–5389. https://doi.org/10.1021/jf050340+
Duran-Izquierdo, M., Taboada-Alquerque, M., Sierra-Marquez, L., Alvarez-Ortega, N., Stashenko, E. and Olivero-Verbel, J., 2022. Hydroalcoholic extract of Haematoxylum brasiletto protects Caenorhabditis elegans from cadmium-induced toxicity. BMC Complementary Medicine and Therapies. 22(1): 184. https://doi.org/10.1186/s12906-022-03654-6
Ejeh, S.A., Abu, H.A., Onyeyili, P.A., Abenga, J.N., Ogbe, R.J. and Abalaka, S.E., 2023. Phytochemical, metal analysis, and in-vitro antioxidant activity of ethanol leaf extract of Alchornea cordifolia (Schumach and Thonn) Mȕll Arg (Euphorbiaceae). Tropical Journal of Natural Product Research. 7(9): 4070–4075. https://doi.org/10.26538/tjnpr/v7i9.34
Erenler, R., Genç, N., Elmastaş, M. and Eminağaoğlu, Ö., 2019. Evaluation of antioxidant capacity with total phenolic content of Galanthus krasnovii (Amaryllidaceae). Turkish Journal of Biodiversity. 2(1): 13–7. https://doi.org/10.38059/biodiversity.526833
Esazadeh, K., Ezzati, N.D.J., Andishmand, H., Mohammadzadeh-Aghdash, H., Mahmoudpour, M., Kermanshahi, N.M. and Roosta, Y., 2024. Cytotoxic and genotoxic effects of tert-butylhydroquinone, butylated hydroxyanisole and propyl gallate as synthetic food antioxidants. Food Science & Nutrition. 12(10): 7004-7016. https://doi.org/10.1002/fsn3.4373
Escobar, A., Pérez, M., Romanelli, G. and Blustein, G., 2020. Thymol bioactivity: a review focusing on practical applications. Arabian Journal of Chemistry. 13(12): 9243–9269. https://doi.org/10.1016/j.arabjc.2020.11.009
Fadahunsi, O., Adegbola, P., Olorunnisola, S. and Akinloye O., 2021. Phytochemistry, nutritional composition, and pharmacological activities of Thaumatococcus daniellii (Benth): a review. BioTechnologia. 102(1): 101–117. https://doi.org/10.5114/bta.2021.103766
Farahmandfar, R., Asnaashari, M. and Sayyad, R., 2017. Antioxidant activity and total phenolic content of capsicum frutescens extracted by supercritical CO2, ultrasound and traditional solvent extraction methods. Journal of Essential Oil Bearing Plants. 20(1): 196–204. https://doi.org/10.1080/0972060X.2017.1280420
Gao, C., Li, Y., Pan, Q., Fan, M., Wang, L. and Qian, H., 2021. Analysis of the key aroma volatile compounds in rice bran during storage and processing via HS-SPME GC/MS. Journal of Cereal Science. 99: 103178. https://doi.org/10.1016/j.jcs.2021.103178
Geng, L., Liu, K. and Zhang, H., 2023. Lipid oxidation in foods and its implications on proteins. Frontiers in Nutrition. 10: 1192199. https://doi.org/10.3389/fnut.2023.1192199
Gonfa, T., Teketle, S. and Kiros, T., 2020. Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in vitro antioxidant activity evaluation of Cadaba rotundifolia Forssk leaf extracts. Cogent Food & Agriculture. 6(1): 1853867. https://doi.org/10.1080/23311932.2020.1853867
Gulcin, İ., 2020. Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology. 94(3): 651–715. https://doi.org/10.1007/s00204-020-02689-3
Gullón, B., Muñiz-Mouro, A., Lú-Chau, T.A., Moreira, M.T., Lema, J.M. and Eibes, G., 2019. Green approaches for the extraction of antioxidants from eucalyptus leaves. Industrial Crops and Products. 138: 111473. https://doi.org/10.1016/j.indcrop.2019.111473
Gupta, A., Atanasov, A.G., Li, Y., Kumar, N. and Bishayee, A., 2022. Chlorogenic acid for cancer prevention and therapy: current status on efficacy and mechanisms of action. Pharmacological Research. 186: 106505. https://doi.org/10.1016/j.phrs.2022.106505
Gupta, K., Kumar, A., Tomer, V., Kumar, V. and Saini, M., 2019. Potential of Colocasia leaves in human nutrition: review on nutritional and phytochemical properties. Journal of Food Biochemistry. 43(7): e12878. https://doi.org/10.1111/jfbc.12878
Gutiérrez-del-Río, I., López-Ibáñez, S., Magadán-Corpas, P., Fernández-Calleja, L., Pérez-Valero, Á., Tuñón-Granda, M., Miguélez, E.M., Villar, C.J. and Lombó, F., 2021. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants. 10(8): 1264. https://doi.org/10.3390/antiox10081264
Hajlaoui, H., Arraouadi, S., Mighri, H., Ghannay, S., Aouadi, K., Adnan, M., Mohamed-Elasbalidi, A., Noumi, E., Snoussi, M. and Kadri, A., 2022. HPLC-MS profiling, antioxidant, antimicrobial, antidiabetic, and cytotoxicity activities of Arthrocnemum indicum (willd.) Moq. extracts. Plants. 11(2): 232. https://doi.org/10.3390/plants11020232
Hamid, A.A., Aliyu, M.A., Abubakar, L.Z., Mukadam, A.A., Shehu, A., Egharevba, G., Adisa, M.J., Ajibade, S.O. Zubair, O.A. and Fagbohun, E.O., 2017. Thaumatococcus daniellii leaves: its chemical compositions, antioxidant and antimicrobial activities. Ife Journal of Science. 19(2): 409–416. https://doi.org/10.4314/ijs.v19i2.21
Harke, M., Somkuwar, A., Dubey, S., Limsay, R., Umap, S., Sawarkar, A. and Borekar, V., 2021. Qualitative and quantitative phytochemical evaluation of ethanolic extract of Mentha pipperita (Linn.). Pharma Innovation Journal. 10(5): 996–1000.
Hasan, M.R., Haque, M.M., Hoque, M.A., Sultana, S., Rahman, M.M., Shaikh, M.A.A. and Sarker, M.K.U., 2024. Antioxidant activity study and GC-MS profiling of Camellia sinensis Linn. Heliyon. 10(1): e23514. https://doi.org/10.1016/j.heliyon.2023.e23514
Henry, G.E., Momin, R.A., Nair, M.G. and Dewitt, D.L., 2002. Antioxidant and cyclooxygenase activities of fatty acids found in food. Journal of Agricultural and Food Chemistry. 50(8): 2231–2234. https://doi.org/10.1021/jf0114381
Herrera-Pool, E., Ramos-Díaz, A.L., Lizardi-Jiménez, M.A., Pech-Cohuo, S., Ayora-Talavera, T., Cuevas-Bernardino, J.C., García-Cruz, U. and Pacheco, N., 2021. Effect of solvent polarity on the ultrasound assisted extraction and antioxidant activity of phenolic compounds from habanero pepper leaves (Capsicum chinense) and its identification by UPLC-PDA-ESI-MS/MS. Ultrason Sonochem. 76: 105658. https://doi.org/10.1016/j.ultsonch.2021.105658
Higuera Mora, N.C., González Orozco, M.A., Suspe Adame, P.A., Medina Rojas, I.D., Sierra Roncancio, S.S., Posada Almanza, R.H., 2020. Socio-ecological relations associated with bijao producing areas (Calathea lutea) in central-eastern Colombia. Trop Subtrop Agroecosystems. 23(3): 76. https://doi.org/10.56369/tsaes.3217
Hirondart, M., Rombaut, N., Fabiano-Tixier, A.S., Bily, A. and Chemat, F., 2020. Comparison between pressurized liquid extraction and conventional soxhlet extraction for rosemary antioxidants, yield, composition, and environmental footprint. Foods. 9(5): 584. https://doi.org/10.3390/foods9050584
Hoelscher, H., Fell, E.L., Colet, R., Nascimento, L.H., Backes, Â.S., Backes, G.T., Cansian, R.L. and Steffens, C., 2024. Antioxidant activity of rosemary extract, acerola extract and a mixture of tocopherols in sausage during storage at 8°C. Journal of Food Science and Technology. 61(1): 69–83. https://doi.org/10.1007/s13197-023-05815-y
Inanli, A.G., Tümerkan, E.T.A., Abed, N.E.L., Regenstein, J.M. and Özogul, F., 2020. The impact of chitosan on seafood quality and human health: a review. Trends Food Science and Technology. 97: 404–416. https://doi.org/10.1016/j.tifs.2020.01.029
Islam, M.A., Ryu, K.Y., Khan, N., Song, O.Y., Jeong, J.Y., Son, J.H., Jamila, N. and Kim, K.S., 2020. Determination of the volatile compounds in five varieties of Piper Betle L. from Bangladesh using simultaneous distillation extraction and gas chromatography/mass spectrometry (SDE-GC/MS). Analytical Letters. 53(15): 2413–2430. https://doi.org/10.1080/00032719.2020.1744160
Jerônimo, L.B., da Costa, J.S., Pinto, L.C., Montenegro, R.C., Setzer, W.N., Mourão, R.H.V., da Silva, J.K.R., Maia, J.G.S. and Figueiredo, P.L.B., 2021. Antioxidant and cytotoxic activities of Myrtaceae essential oils rich in terpenoids from Brazil. Natural Product Communications. 16(2): 1934578X21996156. https://doi.org/10.1177/1934578X21996156
Jiao, J., Zhang, Y., Liu, C., Liu, J., Wu, X. and Zhang, Y., 2007. Separation and purification of tricin from an antioxidant product derived from bamboo leaves. Journal of Agricultural and Food Chemistry. 55(25): 10086–10092. https://doi.org/10.1021/jf0716533
Kalogianni, A.I., Lazou, T., Bossis, I. and Gelasakis, A.I., 2020. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods. 9(6): 794. https://doi.org/10.3390/foods9060794
Kamal, F.Z., Stanciu, G.D., Lefter, R., Cotea, V.V., Niculaua, M., Ababei, D.C., Ciobica, A. and Ech-Chahad, A., 2022. Chemical composition and antioxidant activity of Ammi visnaga L. essential oil. Antioxidants. 11(2): 347. https://doi.org/10.3390/antiox11020347
Karaman, M., Tesanovic, K., Gorjanovic, S., Pastor, F.T., Simonovic, M., Glumac, M. and Pejin, B., 2021. Polarography as a technique of choice for the evaluation of total antioxidant activity: the case study of selected Coprinus Comatus extracts and quinic acid, their antidiabetic ingredient. Natural Product Research. 35(10): 1711–1716. https://doi.org/10.1080/14786419.2019.1628753
Karim, M.A., Islam, M.A., Islam, M.M., Rahman, M.S., Sultana, S., Biswas, S., Hosen, M.J., Mazumder, K., Rahman, M.M. and Hasan, M.N., 2020. Evaluation of antioxidant, anti-hemolytic, cytotoxic effects and anti-bacterial activity of selected mangrove plants (Bruguiera gymnorrhiza and Heritiera littoralis) in Bangladesh. Clinical Phytoscience. 6(1): 8. https://doi.org/10.1186/s40816-020-00162-3
https://doi.org/10.1186/s40816-020-0152-9
Keykhosravy, K., Khanzadi, S., Hashemi, M. and Azizzadeh, M., 2022. Protective effect of chitosan-loaded nanoemulsion containing Zataria multiflora Boiss and Bunium persicum Boiss essential oils as coating on lipid and protein oxidation in chill stored turkey breast fillets. Journal of Food Science. 87(1): 251–265. https://doi.org/10.1111/1750-3841.16011
Kim, M.H., Kwon, S.Y., Woo, S.-Y., Seo, W.D. and Kim, D.Y., 2021. Antioxidative effects of chrysoeriol via activation of the Nrf2 signaling pathway and modulation of mitochondrial function. Molecules 26(2): 313. https://doi.org/10.3390/molecules26020313
Kokilananthan, S., Bulugahapitiya, V.P., Manawadu, H. and Gangabadage, C.S., 2022. Sesquiterpenes and monoterpenes from different varieties of guava leaf essential oils and their antioxidant potential. Heliyon. 8(12): e12104. https://doi.org/10.1016/j.heliyon.2022.e12104
Kumar, Dinesh and Rajakumar, R., 2016. Gas chromatography-mass spectrometry analysis of bioactive components from the ethanol extract of Avicennia marina leaves. GAS. 4(4): 9-12.
Leblebici, M.E., Machmudah, S., Sasaki, M. and Goto, M., 2012. Antiradical efficiency of essential oils from plant seeds obtained by supercritical CO2, soxhlet extraction, and hydrodistillation. Separation Science and Technology. 48(2): 328–37. https://doi.org/10.1080/01496395.2012.690810
Li, L.C., Fu, Y.X., Ning, D.S., Yu, L.L., Zou, Z.Q., Pan, Z.H., 2023. The dichloromethane extract of Callicarpa longissima rich in diterpenoid phenols exerts an anti-inflammatory effect by inhibiting the TLR4/NF-κB signaling pathway. Journal of Ethnopharmacology. 305: 116124. https://doi.org/10.1016/j.jep.2022.116124
Li, M., Pu, Y., Meng, X., Chen, F., Dixon, R.A. and Ragauskas, A.J., 2022. Strikingly high amount of tricin-lignin observed from vanilla (Vanilla planifolia) aerial roots. Green Chemistry 24(1): 259–270. https://doi.org/10.1039/D1GC03625D
https://doi.org/10.1039/D3GC04244H
Li, C., Yu, M., Li, S., Yang, X., Qiao, B., Shi, S., Zhao, C. and Fu, Y., 2021. Valorization of Fig (Ficus carica L.) waste leaves: HPLC-QTOF-MS/MS-DPPH system for online screening and identification of antioxidant compounds. Plants. 10(11): 2532. https://doi.org/10.3390/plants10112532
Lima, G.S., Lima, N.M., Roque, J.V., de Aguiar, D.V.A., Oliveira, J.V.A., dos Santos, G.F., Chaves, A.R. and Vaz, B.G., 2022. LC-HRMS/MS-based metabolomics approaches applied to the detection of antifungal compounds and a metabolic dynamic assessment of Orchidaceae. Molecules. 27(22): 7937. https://doi.org/10.3390/molecules27227937
Lin, Y., Li, D., Zhou, C., Wu, Y., Miao, P., Dong, Q. and Pan, C., 2022. Application of insecticides on peppermint (Mentha piperita L.) induces lignin accumulation in leaves by consuming phenolic acids and thus potentially deteriorates quality. Journal of Plant Physiology. 279: 153836. https://doi.org/10.1016/j.jplph.2022.153836
Lin, D., Ma, Q., Zhang, Y. and Peng, Z., 2020. Phenolic compounds with antioxidant activity from strawberry leaves: a study on microwave-assisted extraction optimization. Preparative Biochemistry & Biotechnology. 50(9): 874–882. https://doi.org/10.1080/10826068.2020.1762213
Liu, T., Cao, L., Zhang, T. and Fu, H., 2023. Molecular docking studies, anti-Alzheimer’s disease, antidiabetic, and anti-acute myeloid leukemia potentials of narcissoside. Archives of Physiology and Biochemistry. 129(2): 405–415. https://doi.org/10.1080/13813455.2020.1828483
Lv, J.M., Gouda, M., El-Din Bekhit, A., He, Y.K., Ye, X.Q. and Chen, J.C., 2022. Identification of novel bioactive proanthocyanidins with potent antioxidant and anti-proliferative activities from kiwifruit leaves. Food Bioscience. 46: 101554. https://doi.org/10.1016/j.fbio.2022.101554
Mahnashi, M., Alyami, B., Alqahtani, Y., Alqarni, A., Jan, M., Hussain, F., Zafar, R., Rashid, U., Abbas, M., Tariq, M. and Sadiq, A., 2022. Antioxidant molecules isolated from edible knotweed: rational derivatization to produce more potent molecules. Oxidative Medicine and Cellular Longevity. 1: 3127480. https://doi.org/10.1155/2022/3127480
Malacaria, L., La Torre, C., Furia, E., Fazio, A., Caroleo, M.C., Cione, E. and Plastina, P., 2022. Aluminum (III), iron (III) and copper (II) complexes of luteolin: stability, antioxidant, and anti-inflammatory properties. Journal of Molecular Liquids. 345: 117895. https://doi.org/10.1016/j.molliq.2021.117895
Masyita, A., Sari. R.M., Astuti, A.D., Yasir, B., Rumata, N.R., Emran, T.B., Nainu, F. and Simal-Gandara, J., 2022. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X 13: 100217. https://doi.org/10.1016/j.fochx.2022.100217
Matrose, N.A., Obikeze, K., Belay, Z.A. and Caleb, O.J., 2021. Impact of spatial variation and extraction solvents on bioactive compounds, secondary metabolites, and antifungal efficacy of South African Impepho [Helichrysum odoratissimum (L.) Sweet]. Food Bioscience. 42: 101139. https://doi.org/10.1016/j.fbio.2021.101139
Mejia, N.., Castro, J., Ocampo, Y., Salas, R., Delporte, C. and Franco, L., 2020. Evaluation of antioxidant potential and total phenolic content of exotic fruits grown in Colombia. Journal of Applied Pharmaceutical Science. 10(09): 050–058.
Mesías, F.J., Martín, A. and Hernández, A., 2021. Consumers’ growing appetite for natural foods: perceptions towards the use of natural preservatives in fresh fruit. Food Research International, 150: 110749. https://doi.org/10.1016/j.foodres.2021.110749
Mitterer-Daltoé, M., Bordim, J., Lise, C., Breda, L., Casagrande, M., LIMA, V., 2021. Consumer awareness of food antioxidants. Synthetic vs. natural. Food Science & Technology. 41(suppl 1): 208–212. https://doi.org/10.1590/fst.15120
Mizuno, T., Tanaka, N., Aung, M.M. and Azuma, M. 2022. Anthocyanins from the leafy stems and rhizomes of Zingiber mekongense and their distribution in nine Zingiberaceae and one Costaceae species. Bulletin of the National Museum of Nature and Science. Series B, Botany. 48(2): 61–69.
Molnar, M., Mendešević, N., Šubarić, D., Banjari, I. and Jokić, S., 2017. Comparison of various techniques for the extraction of umbelliferone and herniarin in Matricaria chamomilla processing fractions. Chemistry Central Journal. 11(1): 78. https://doi.org/10.1186/s13065-017-0308-y
Monteiro, M., Santos, R.A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., Barros, A., Oliva-Teles, A., Enes, P. and Díaz-Rosales, P., 2020. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology. 32: 349–362. https://doi.org/10.1007/s10811-019-01927-1
Mumtaz, M. Kausar, F. Hassan, M., Javaid, S. and Malik, A., 2021. Anticancer activities of phenolic compounds from Moringa oleifera leaves: in vitro and silico mechanistic study. Beni-Suef University Journal of Basic and Applied Sciences. 10: 1–11. https://doi.org/10.1186/s43088-021-00101-2
Muzammil, S., Wang, Y., Siddique Zubair, E., Hayat, S., Zubair, M. and Shahid, M.Q., 2022. Composición polifenólica, actividades antioxidantes, antiproliferativas y antidiabéticas de extractos de hojas de Coronopus didymus. Moléculas. 27(19): 6263. https://doi.org/10.3390/molecules27196263
Muzolf-Panek, M. and Stuper-Szablewska, K., 2021. Comprehensive study on the antioxidant capacity and phenolic profiles of black seed and other spices and herbs: Effect of solvent and time of extraction. Journal of Food Measurement and Characterization. 15(5): 4561–4574. https://doi.org/10.1007/s11694-021-01028-z
Nakamura, A. and Miyazawa, M., 2013. Evaluation of volatiles from ampelopsis brevipedunculata var. heterophylla using GC-olfactometry, GC-MS and GC-pulsed flame photometric detector. Journal of Oleo Science. 62(9): 645–655. https://doi.org/10.5650/jos.62.645
National Center for Biotechnology Information, 2023. PubChem compound summary for CID 23983728. National Institutes of Health (NIH), Bethesda, MD.
Oboh, G., Akinyemi, A., Oyeleye, I. and Williamsnelson, K., 2016. Protective effect of phenolic extracts from two species of miracle berry leaves (Thaumatococcus daniellii and Megaphrynium macrostachyum) on some pro-oxidant induced oxidative stress in rat pancreas in vitro. Journal of Applied Pharmaceutical Science. 6(1): 118–124. https://doi.org/10.7324/JAPS.2016.600119
Obonga, W., Nnadi, C., Chima, C., Okafor, S. and Omeje, E., 2019. In vitro antioxidant and In vivo anti-inflammatory potentials of Marantochloa leucantha (Marantaceae) extracts and fractions. Dhaka University Journal of Pharmaceutical Sciences. 18(2): 233–240. https://doi.org/10.3329/dujps.v18i2.44463
Ojekale B.A., 2013. Volatile constituents, antioxidant and insecticidal activities of essential oil from the leaves of Thaumatococcus Danielli (Benn.) Benth. From Nigeria. IOSR Journal of Pharmacy. 3(3): 01–5. https://doi.org/10.9790/3013-0331015
Oney-Montalvo, J., Avilés-Bentanzos, K., Ramírez-Rivera, E., Ramírez-Sucre, M. and Rodríguez-Buenfil, I., 2020. Polyphenol content in Capsicum chinense fruits at different harvest times and its correlation with antioxidant activity. Plants. 9(10): 1394. https://doi.org/10.3390/plants9101394
Osorio-Tobón, J.F., 2020. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology. 57: 4299–4315. https://doi.org/10.1007/s13197-020-04433-2
Pateiro, M., Gómez-Salazar, J.A., Jaime-Patlán, M., Sosa-Morales, M.E. and Lorenzo, J.M., 2021. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants. 10(2): 181. https://doi.org/10.3390/antiox10020181
Padmini, R., Maheshwari, U.V., Saravanan, P., Woo-Lee, K., Razia, M., Alwahibi, M.S., Ravindran, B., Elshikh, M.S., Kim, Y.O., Kim, H. and Kim, H.J., 2020. Identification of novel bioactive molecules from garlic bulbs: a special effort to determine the anticancer potential against lung cancer with targeted drugs. Saudi Journal of Biological Sciences 27(12): 3274–3289. https://doi.org/10.1016/j.sjbs.2020.09.041
Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R. and Lewandowski, W., 2021. Recent developments in effective antioxidants: the structure and antioxidant properties. Materials 14(8): 1984. https://doi.org/10.3390/ma14081984
Pateiro, M., Domínguez, R., Munekata, P.E.S., Nieto, G., Bangar, S.P., Dhama, K. and Lorenzo, J.M., 2023. Bioactive compounds from leaf vegetables as preservatives. Foods. 12(3): 637. https://doi.org/10.3390/foods12030637
Patra, J.K., Lee, S.W., Park, J.G. and Baek, K.H., 2017. Antioxidant and antibacterial properties of essential oil extracted from an edible seaweed Undaria pinnatifida. Journal of Food Biochemistry. 41(1): e12278. https://doi.org/10.1111/jfbc.12278
Paunović, S.M., Mašković, P., Nikolić, M. and Miletić, R., 2017. Bioactive compounds and antimicrobial activity of black currant (Ribes nigrum L.) berries and leaves extract obtained by different soil management system. Scientia Horticulturae (Amsterdam) 222: 69–75. https://doi.org/10.1016/j.scienta.2017.05.015
Peng, F., Sheng, L., Liu, B., Tong, H. and Liu, S., 2004. Comparison of different extraction methods: steam distillation, simultaneous distillation and extraction, and headspace co-distillation, used for the analysis of the volatile components in aged flue-cured tobacco leaves. Journal of Chromatography A 1040(1): 1–17. https://doi.org/10.1016/j.chroma.2004.03.057
Pico, J., Yan, Y., Gerbrandt, E.M. and Castellarin, S.D., 2022. Determination of free and bound phenolics in northern highbush blueberries by a validated HPLC/QTOF methodology. Journal of Food Composition and Analysis. 108: 104412. https://doi.org/10.1016/j.jfca.2022.104412
Pires, E.O., Calleja, C., Garcia, C.C., Ferreira, I.C.F.R. and Barros, L., 2021. Current status of genus Impatiens: bioactive compounds and natural pigments with health benefits. Trends in Food Science & Technology. 117: 106–124. https://doi.org/10.1016/j.tifs.2021.01.074
Prasniewski, A., da Silva, C., Ayres, B.R.B., da Silva, E.A., Pilau, E.J., Nani, B.D., Rosalen, P.L. and Cadorin, O.T.L., 2021. Characterization of phenolic compounds by UHPLC-QTOF-MS/MS and functional properties of Syzygium malaccense leaves. South African Journal of Botany. 139: 418–426. https://doi.org/10.1016/j.sajb.2021.01.036
Qian, M.C. and Wang, Y., 2005. Seasonal variation of volatile composition and odor activity value of ‘Marion’ (Rubus spp. hyb) and ‘Thornless Evergreen’ (R. laciniatus L.) blackberries. Journal of Food Science. 70(1): C13–C20. https://doi.org/10.1111/j.1365-2621.2005.tb09013.x
Quintana, S.E., Cueva, C., Villanueva-Bermejo, D., Moreno-Arribas, M.V., Fornari, T. and García-Risco, M.R., 2019. Antioxidant and antimicrobial assessment of licorice supercritical extracts. Industrial Crops and Products. 139: 111496. https://doi.org/10.1016/j.indcrop.2019.111496
Quispe, C., Petroll, K., Theoduloz, C. and Schmeda-Hirschmann, G., 2014. Antioxidant effect and characterization of South American Prosopis pods syrup. Food Research International. 56: 174–181. https://doi.org/10.1016/j.foodres.2013.12.033
Ramanathan, R., Suman, S.P. and Faustman, C., 2020. Biomolecular interactions governing fresh meat color in post-mortem skeletal muscle: a review. Journal of Agricultural and Food Chemistry. 68(46): 12779–12787. https://doi.org/10.1021/acs.jafc.9b08098
Rao, M.R.K., Ravi, A., Narayanun, S., Prabhu, K., Kalaiselvi, V.S., Dinakar, S., Rajun, G. and Kotteeswaran, N., 2016. Antioxidant study and GC MS analysis of an ayurvedic medicine “Talisapatradi choornam.” International Journal of Pharmaceutical Sciences, Review and Research. 36(1): 158–166.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26(9–10): 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rezende, C.M. and Fraga, S.R.G., 2003. Chemical and aroma determination of the pulp and seeds of murici (Byrsonima crassifolia L.). Journal of the Brazilian Chemical Society 14(3): 425–428. https://doi.org/10.1590/S0103-50532003000300014
Rivera, D.E., Ocampo, Y.C., Castro, J.P., Barrios, L., Diaz, F. and Franco, L.A., 2019. A screening of plants used in Colombian traditional medicine revealed the anti-inflammatory potential of Physalis angulata calyces. Saudi Journal of Biological Science. 26(7): 1758–66. https://doi.org/10.1016/j.sjbs.2018.05.030
Robalino Pinedo, D. and Torres Carrión, C., 2021. Metabolitos Secundarios y Actividad Antiinflamatoria In Vitro de hojas de Laportea aestuans L. y Calathea lutea Schult Sobre Eritrocitos Plasmáticos. Thesis. Universidad Nacional De La Amazonía Peruana (UNAP), Iquitos, Peru.
Rozali, S., Rashid, K. and Farzinebrahimi, R., 2016. Effects of shading treatments on pigmentation and inflorescence quality of calathea crotalifera bracts. International Journal of Agriculture and Biology. 18(3): 549–556. https://doi.org/10.17957/IJAB/15.0123
Rubab, M., Chelliah, R., Saravanakumar, K., Barathikannan, K., Wei, S., Kim, J.R., Yoo, D., Wang, M.H. and Oh, D.H., 2020. Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitate f, rubra (red cabbage) on oxidative and microbiological stability of beef meat. Foods 9(5): 568. https://doi.org/10.3390/foods9050568
Rumpf, J., Burger, R. and Schulze M., 2023. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules 233: 123470. https://doi.org/10.1016/j.ijbiomac.2023.123470
Saldaña, L., 2019. Toxicidad aguda del extracto acuoso de hojas de Calathea lutea ‘bijao’ en ratones albinos balb/c. Undergraduate Thesis, Universidad Nacional de la Amazonia Peruana, Peru.
Sales, A., Olivera-Felipe, L. and Lemos-Bicas, J., 2020. Production, properties, and applications of α-Terpineol. Food and Bioprocess Technology. 13(8): 1261–1279. https://doi.org/10.1007/s11947-020-02461-6
Sánchez-Martínez, J.D., Bueno, M., Alvarez-Rivera, G., Tudela, J., Ibañez, E. and Cifuentes, A. 2021. In vitro neuroprotective potential of terpenes from industrial orange juice by-products. Alimentación y Función. 12(1): 302–314. https://doi.org/10.1039/D0FO02809F
Sassi, A., Normah, H., Khattak, M. and Hanapi, M., 2022. Analysis of the phenolic profile, total phenolic content and antioxidant activity in Anacardium occidentale leaves. Food Research 6(1): 20–26. https://doi.org/10.26656/fr.2017.6(1).105
Satari, A., Ghasemi, S., Habtemariam, S., Asgharian, S. and Lorigooini, Z. 2021. Rutin: a flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evidence-Based Complementary and Alternative Medicine 2021(1): 9913179. https://doi.org/10.1155/2021/9913179
Schmidt, E., Wanner, J., Höferl, M., Jirovetz, L., Buchbauer, G., Gochev, V., Girova, T., Stoyanova, A. and Geissler, M., 2012. Chemical composition, olfactory analysis and antibacterial activity of thymus vulgaris chemotypes geraniol, 4-thujanol/terpinen-4-ol, thymol and linalool cultivated in southern France. Natural Product Communications. 7(8): 1934578X1200700. https://doi.org/10.1177/1934578X1200700833
Souza, R.V., Ionta, M., Borges, C., Ferreira, V.R.F., Caetano, A.R.S., Campolina, G.A., Horvath, R.O., Nelson, D.L. and Cardoso, M.D.G., 2022. Antioxidant and antitumoral potential of terpenes and phenylpropanoids against MCF7, A549 and HT144 cancer cell lines. Australian Journal of Crop Science. 16(03): 372–380. https://doi.org/10.21475/ajcs.22.16.03.p3395
Serino, E., Chahardoli, A., Badolati, N., Sirignano, C., Jalilian, F., Mojarrab, M., Farhangi, Z., Rigano, D., Stornaiuolo, M., Shokoohinia, Y. and Taglialatela-Scafati, O., 2021. Salvigenin, a trimethoxylated flavone from Achillea Wilhelmsii C. Koch, exerts combined lipid-lowering and mitochondrial stimulatory effects. Antioxidants. 10(7): 1042. https://doi.org/10.3390/antiox10071042
Serra Bisbal, J.J., Melero Lloret, J., Martínez Lozano, G. and Fagoaga, C., 2015. Especies vegetales como antioxidantes de alimentos. Nereis: Interdisciplinary Ibero-American Journal of Methods, Modelling and Simulation. (12): 71–90. https://doi.org/10.46583/nereis_2020.12.577
Shaheen, U.Y., 2011. P-coumaric acid ester with potential antioxidant activity from the genus salvia. Free Radicals Antioxidants. 1(1): 23–7. https://doi.org/10.5530/ax.2011.1.5
Shahzad, S., Mateen, S., Kausar, T., Naeem, S.S., Hasan, A., Abidi, M., Nayeem, S.M., Faizy, A.F. and Moin, S., 2020. Effect of syringic acid and syringaldehyde on oxidative stress and inflammatory status in peripheral blood mononuclear cells from patients of myocardial infarction. Naunyn-Schmiedeberg's Archives of Pharmacology. 393(4): 691–704. https://doi.org/10.1007/s00210-019-01768-2
Shehata, M.G., Awad, T.S., Asker, D., El Sohaimy, S.A., Abd El-Aziz, N.M. and Youssef, M.M., 2021. Antioxidant and antimicrobial activities and UPLC-ESI-MS/MS polyphenolic profile of sweet orange peel extracts. Current Research in Food Science. 4: 326–335. https://doi.org/10.1016/j.crfs.2021.05.001
Shimul, I.M., Moshikur, R.M., Minamihata, K., Moniruzzaman, M., Kamiya, N., Goto, M., 2022. Choline oleate based micellar system as a new approach for Luteolin formulation: antioxidant, antimicrobial, and food preservation properties evaluation. Journal of Molecular Liquids. 365: 120151. https://doi.org/10.1016/j.molliq.2022.120151
Shodehinde, S.A. and Oboh, G., 2013. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro. Asian Pacific Journal of Tropical Biomedicine. 3(6): 449–457. https://doi.org/10.1016/S2221-1691(13)60095-7
Simonetti, G., Brasili, E. and Pasqua, G., 2020. Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules. 25(16): 3748. https://doi.org/10.3390/molecules25163748
Singh, A.K., Singla, R.K. and Pandey, A.K., 2023. Chlorogenic acid: a dietary phenolic acid with promising pharmacotherapeutic potential. Current Medicinal Chemistry. 30(34): 3905–3926. https://doi.org/10.2174/0929867329666220816154634
Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants employing folin-ciocalteu reagent. Methods in Enzymology. 299: 152–78. https://doi.org/10.1016/S0076-6879(99)99017-1
Starowicz, M., 2021. Analysis of volatiles in food products. Separations. 8(9): 157. https://doi.org/10.3390/separations8090157
Suntres, Z.E., Coccimiglio, J. and Alipour, M., 2015. The bioactivity and toxicological actions of carvacrol. Critical Reviews in Food Science and Nutrition. 55(3): 304–318. https://doi.org/10.1080/10408398.2011.653458
Tamburini, D., 2019. Investigating Asian colorants in Chinese textiles from Dunhuang (7th–10th century AD) by high performance liquid chromatography tandem mass spectrometry – towards the creation of a mass spectra database. Dyes and Pigments. 163: 454–574. https://doi.org/10.1016/j.dyepig.2018.12.025
Tao, N.P., Wu, R., Zhou, P.G., Gu, S.Q. and Wu, W., 2014. Characterization of odor-active compounds in cooked meat of farmed obscure puffer (Takifugu obscurus) using gas chromatography–mass spectrometry–olfactometry. Journal of Food and Drug Analysis. 22(4): 431–438. https://doi.org/10.1016/j.jfda.2014.02.005
Tomás, C.G., Huamán, C.G., Aguirre, M.R., Guerrero, A.M., Orihuela, R.C., Candia, T.K. and Barreda, T.K., 2010. Estudio Químico Y Fitoquímico Del Tagetes Eliptica “Chincho” Y Calathea lutea “Bijao”, Como Alternativa De Alimentos Funcionales. La Revista Peruana de Química e Ingeniería Química. 13(1): 11–13.
Vanitha, V., Vijayakumar, S., Nilavukkarasi, M., Punitha, V.N., Vidhya, E. and Praseetha, P.K., 2020. Heneicosane—a novel microbicidal bioactive alkane identified from Plumbago zeylanica L. Industrial Crops and Products. 154: 112748. https://doi.org/10.1016/j.indcrop.2020.112748
Vellapandian, C., 2022. Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) Fruit. Applied Biochemistry and Biotechnology. 194(9): 4018–4032. https://doi.org/10.1007/s12010-022-03961-1
Villanueva-Bermejo, D., de las Nieves Siles-Sánchez, M., Hernández, D.M., García-Risco, M.R., Jaime, L., Santoyo, S. and Fornari, T., 2024. Theoretical framework to evaluate antioxidant synergistic effects from the coextraction of marjoram, rosemary and parsley. Food Chemistry. 437: 137919. https://doi.org/10.1016/j.foodchem.2023.137919
Visakh, N.U., Pathrose, B., Chellappan, M., Ranjith, M.T., Sindhu, P.V. and Mathew, D., 2023. Extraction and chemical characterisation of agro-waste from turmeric leaves as a source of bioactive essential oils with insecticidal and antioxidant activities. Waste Management. 169(1): 1–10. https://doi.org/10.1016/j.wasman.2023.06.030
Wadher, K., Trivedi, S. and Umekar, M., 2022. Formulation and cytotoxic characterization of rutin loaded flexible transferosomes for topical delivery: ex-vivo and in vitro evaluation. SSRN Electronic Journal. 4145403. https://doi.org/10.2139/ssrn.4145403
Wang, D., Xiao, H., Lyu, X., Chen, H. and Wei, F., 2023. Lipid oxidation in food science and nutritional health: a comprehensive review. Oil Crop Science. 8(1): 35–44. https://doi.org/10.1016/j.ocsci.2023.02.002
Wei, J., Su, T., Su, H., Jiang, Y., Li, J. and Bi, Y., 2022. Comparative assessment of phenolics, antioxidant and antiproliferative activities between Hippophae rhamnoides ssp. sinensis and H. tibetana leaf in Qinghai-Tibet Plateau. Food Bioscience. 46: 101507. https://doi.org/10.1016/j.fbio.2021.101507
Williams, C.A. and Harborne, J.B., 1977. The leaf flavonoids of the Zingiberales. Biochemical Systematics and Ecology. 5(3): 221–229. https://doi.org/10.1016/0305-1978(77)90008-4
Wołosiak, R., Drużyńska, B., Derewiaka, D., Piecyk, M., Majewska, E., Ciecierska, M., Worobiej, E. and Pakosz, P., 2021. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—a practical approach. Molecules. 27(1): 50. https://doi.org/10.3390/molecules27010050
Wu, H., Liu, X., Zhao, J. and Yu, J., 2013. Regulation of metabolites, gene expression, and antioxidant enzymes to environmentally relevant lead and zinc in the Halophyte suaeda salsa. Journal of Plant Growth Regulation. 32(2): 353–361. https://doi.org/10.1007/s00344-012-9305-5
Wu, H., Richards, M.P., and Undeland, I., 2022. Lipid oxidation and antioxidant delivery systems in muscle food. Comprehensive Reviews in Food Science and Food Safety. 21(2): 1275–1299. https://doi.org/10.1111/1541-4337.12890
Xie, D.P., Gong, Y.X., Lee, J., Jeong, E.M., Ren, C.X., Guo, X.Y., Han, Y.H., Cui, Y.D., Lee, S.J., Kwon, T. and Sun, H.N., 2022. Peroxiredoxin 5 protects HepG2 cells from ethyl β-carboline-3-carboxylate-induced cell death via ROS-dependent MAPK signalling pathways. Journal of Cancer. 13(11): 3258–3267. https://doi.org/10.7150/jca.76663
Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M.R., Wang, X., Martinez, M., Anadón, A. and Martínez, M.A., 2021. Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chemistry. 353: 129488. https://doi.org/10.1016/j.foodchem.2021.129488
Yadav, E. and Rao, R., 2016. A promising bioactive component terpinen-4-ol: a review. International Journal of Pharmacognosy. 36(8): 336–345.
Yancheva, D., Velcheva, E., Glavcheva, Z., Stamboliyska, B. and Smelcerovic, A., 2016. Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion. Journal of Molecular Structure. 1108: 552–559. https://doi.org/10.1016/j.molstruc.2015.12.054
Yang, L.C., Li, R., Tan, J. and Jiang, Z.T., 2013. Polyphenolics composition of the leaves of Zanthoxylum bungeanum Maxim. grown in Hebei, China, and their radical scavenging activities. Journal of Agricultural and Food Chemistry. 61(8): 1772–1778. https://doi.org/10.1021/jf3042825
Zamuz, S., Munekata, P.E., Dzuvor, C.K., Zhang, W., Sant'Ana, A.S., Lorenzo, J.M., 2021. The role of phenolic compounds against Listeria monocytogenes in food. A review. Trends in Food Science & Technology 110: 385–392. https://doi.org/10.1016/j.tifs.2021.01.068
Zhang, L., Cao, Q.Q., Granato, D., Xu, Y.Q. and Ho C.T., 2020. Association between chemistry and taste of tea: a review. Trends in Food Science & Technology 101: 139–49. https://doi.org/10.1016/j.tifs.2020.05.015
Zhang, X.J., Diao, M.N., Zhang, Y.F., 2023. A review of the occurrence, metabolites and health risks of butylated hydroxyanisole (BHA). Journal of the Science of Food and Agriculture 103(13): 6150–6166. https://doi.org/10.1002/jsfa.12676
Zhang, S., Li, H., Li, M., Chen, G., Ma, Y., Wang, Y. and Chen, J., 2022. Construction of ferulic acid modified porous starch esters for improving the antioxidant capacity. RSC Advances. 12(7): 4253–4262. https://doi.org/10.1039/D1RA08172A
Zheng, T., Wong, E.C.W, Yue, G.G.L., Li, X.X., Wu, K.H.Y, Lau, D.T.W., Shaw, P.C., Simmonds, M.S.J. and Lau, C.B.S., 2021. Identification and quantification of tricin present in medicinal herbs, plant foods and by-products using UPLC-QTOF-MS. Chemical Papers. 75(9): 4579–4588. https://doi.org/10.1007/s11696-021-01651-6
Zhu, Y., Lv, H.P., Dai, W.D, Guo, L., Tan, J.F, Zhang, Y., Yu, F.L., Shao, C.Y., Peng, Q.H. and Lin, Z., 2016. Separation of aroma components in Xihu Longjing tea using simultaneous distillation extraction with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Separation and Purification Technology 164: 146–154. https://doi.org/10.1016/j.seppur.2016.03.028
