Green-synthesized silver nanoparticles using Syzygium jambos leaf extract: antioxidant, antibacterial, and potential therapeutic applications in functional foods

Main Article Content

Mosleh Mohammad Abomughaid

Keywords

silver nanoparticles, Syzygium jambos, antioxidant and antibacterial activity, zebrafish

Abstract

Food nanotechnology offers novel strategies for enhancing functional foods through bioactive delivery and antimicrobial protection. In this study, silver nanoparticles (AgNPs) were synthesized using Syzygium jambos leaf extract, which was confirmed by visual examination and ultraviolet-visible spectroscopy. Further characterization using Fourier transform-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy analysis identified the physicochemical properties of synthesized AgNPs, which displayed strong antioxidant potential, inhibiting 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals in a dose-dependent manner. AgNPs also exhibited antibacterial activity against Bacillus cereus and Shigella flexneri, with zones of inhibition comparable to that of antibiotic control. However, zebrafish embryo toxicity studies revealed dose-responsive effects. These findings highlight S. jambos-mediated AgNPs as promising functional food additives with antimicrobial and antioxidant benefits, suitable for food preservation, disease sensing, and therapeutic delivery. Further safety evaluations are necessary for their integration into food and biomedical applications.

Abstract 414 | PDF Downloads 357 HTML Downloads 0 XML Downloads 16

References

Abdallah, S.A, Hakim, T.A., Rezk, N., Farouk, W.M., Hassan, Y.Y., Gouda, S.M., and El-Shibiny, A. 2022. Green synthesis of silver nanoparticles using Ocimum basilicum L., and Hibiscus sabdariffa L. extracts and their antibacterial activity in combination with phage ZCSE6 and sensing properties. Journal of Inorganic and Organometallic Polymers and Materials 32(6): 1951–1965. 10.1007/s10904-022-02234-y

Alarjani, K.M., Huessien, D., Rasheed, R.A., and Kalaiyarasi, M. 2022. Green synthesis of silver nanoparticles by Pisum sativum L. (pea) pod against multidrug resistant foodborne pathogens. Journal of King Saud University–Science 34(3): 101897. 10.1016/j.jksus.2022.101897

Alex, A.M., Subburaman, S., Chauhan, S., Ahuja, V., Abdi, G., and Tarighat, M.A. 2024. Green synthesis of silver nanoparticle prepared with Ocimum species and assessment of anticancer potential. Scientific Reports 14(1): 11707. 10.1038/s41598-024-61946-y

Al-Otibi, F.O., Yassin, M.T., Al-Askar, A.A., and Maniah, K. 2023. Green biofabrication of silver nanoparticles of potential synergistic activity with antibacterial and antifungal agents against some nosocomial pathogens. Microorganisms 11(4): 945. 10.3390/microorganisms11040945

Alzubaidi, A.K., Al-Kaabi, W.J., Ali, A.A., Albukhaty, S., Al-Karagoly, H., Sulaiman, G.M., Asiri, M., and Khane, Y. 2023. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Applied Sciences 13(4): 2182. 10.3390/app13042182

Anandalakshmi, K., Venugobal, J., and Ramasamy, V. 2016. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience 6: 399–408. 10.1007/s13204-015-0449-z

Anbumani, D., Dhandapani, K.V., Manoharan, J., Babujanarthanam, R., Bashir, AKH, Muthusamy, K., Alfarhan, A., and Kanimozhi, K. 2022. Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract. Journal of King Saud University–Science 34(3): 101896. 10.1016/j.jksus.2022.101896

Andrabi, S.M., Sharma, N.S., Karan, A., Shahriar, S.S.M., Cordon, B., Ma, B., and Xie, J. 2023. Nitric oxide: physiological functions, delivery, and biomedical applications. Advanced Science 10(30): 2303259. 10.1002/advs.202303259

Ansar, S., Tabassum, H., Aladwan, Norah S.M., Ali, M.N., Almaarik, B., AlMahrouqi, S., Abudawood, M., Banu, N., and Alsubki, R. 2020. Eco-friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Scientific Reports 10(1): 18564. 10.1038/s41598-020-74371-8

Arshad, F., Naikoo, G.A., Hassan, I.U., Chava, S.R., El-Tanani, M., Aljabali, A.A., and Tambuwala, M.M. 2024. Bioinspired and green synthesis of silver nanoparticles for medical applications: a green perspective. Applied Biochemistry and Biotechnology 196(6): 3636–3669. 10.1007/s12010-023-04719-z

Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., and Umbreen, S. 2022. Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response 20(2):15593258221088709. 10.1177/15593258221088709

Avila-Peña, D., Peña, N., Quintero, L., and Suárez-Roca, H. 2007. Antinociceptive activity of Syzygium jambos leaves extract on rats. Journal of Ethnopharmacology 112(2): 380–385. 10.1016/j.jep.2007.03.027

Baghizadeh, A., Ranjbar, S., Gupta, V.K., Asif, M., Pourseyedi, S., Karimi, M.J., and Mohammadinejad, R. 2015. Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. Journal of Molecular Liquids 207: 159–163. 10.1016/j.molliq.2015.03.029

Balkrishna, A., Kumar, A., Arya, V., Rohela, A., Verma, R., Nepovimova, E., Krejcar, O., Kumar, D., Thakur, N., and Kuca, K. 2021. Phytoantioxidant functionalized nanoparticles: a green approach to combat nanoparticle-induced oxidative stress. Oxidative Medicine and Cellular Longevity 2021(1): 3155962. 10.1155/2021/3155962

Baskaran, R., Chen, Yi-Ju, Chang Ching-Fang, Kuo Hsin-Ning, Liang, Chih-Hung, Abomughaid, M.M., Senthil Kumar, K.J., and Lin, Wan-Teng. 2025. Potato protein hydrolysate (PPH902) exerts anti-lipogenesis and lipolysis-promoting effect by inhibiting adipogenesis in 3T3-L1 adipocytes. 3 Biotech 15(4): 83. 10.1007/s13205-025-04238-0

Bhakya, S, Muthukrishnan, S., Sukumaran, M., and Muthukumar, M. 2016. Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Applied Nanoscience 6: 755–766. 10.1007/s13204-015-0473-z

Bharadwaj, K.K., Rabha, B., Pati, S., Choudhury, B.K., Sarkar, T., Gogoi, S.K., Kakati, N., Baishya, D., Abdul Kari, Z., and Edinur, H.T. 2021. Green synthesis of silver nanoparticles using Diospyros malabarica fruit extract and assessments of their antimicrobial, anticancer and catalytic reduction of 4-nitrophenol (4-NP). Nanomaterials 11(8): 1999. 10.3390/nano11081999

Bordiwala, R.V. 2023. Green synthesis and applications of metal nanoparticles–a review article. Results in Chemistry 5: 100832. 10.1016/j.rechem.2023.100832

Borquaye, L.S., Laryea, M.K., Gasu, E.N., Boateng, M.A., Baffour, P.K., Kyeremateng, A., and Doh, G. 2020. Anti-inflammatory and antioxidant activities of extracts of Reissantia indica, Cissus cornifolia and Grosseria vignei. Cogent Biology 6(1): 1785755. 10.1080/23312025.2020.1785755

Chaudhari, R.K., Shah, P.A., and Shrivastav, P.S. 2023. Green synthesis of silver nanoparticles using Adhatoda vasica leaf extract and its application in photocatalytic degradation of dyes. Discover Nano 18(1): 135. 10.1186/s11671-023-03914-5

Chaudhary, P., Janmeda, P., Docea, A.O., Yeskaliyeva, B., Razis, A.A.F., Modu, B., Calina, D., and Sharifi-Rad, J. 2023. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry 11: 1158198. 10.3389/fchem.2023.1158198

Chinnaraj, S., Palani, V., Maluventhen, V., Chandrababu, R., Soundarapandian, K., Kaliannan, D., Rathinasamy, B., Liu, W-C., Balasubramanian, B., and Arumugam, M. 2023. Silver nanoparticle production mediated by Goniothalamus wightii extract: characterization and their potential biological applications. Particulate Science and Technology 41(4): 517–531. 10.1080/02726351.2022.2123752

Dakshayani, S.S., Marulasiddeshwara, M.B., Kumar, S., Golla, R., Devaraja, S.R.H.K., and Hosamani, R. 2019. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. International Journal of Biological Macromolecules 131: 787–797. 10.1016/j.ijbiomac.2019.01.222

Dangi, S., Gupta, A., Gupta, D.K., Singh, S., and Parajuli, N. 2020. Green synthesis of silver nanoparticles using aqueous root extract of Berberis asiatica and evaluation of their antibacterial activity. Chemical Data Collections 28: 100411. 10.1016/j.cdc.2020.100411

Dhandapani, K.V., Anbumani, D., Gandhi, A.D., Annamalai, P., Muthuvenkatachalam, B.S., Kavitha, P., and Ranganathan, B. 2020. Green route for the synthesis of zinc oxide nanoparticles from Melia azedarach leaf extract and evaluation of their antioxidant and antibacterial activities. Biocatalysis and Agricultural Biotechnology 24: 101517. 10.1016/j.bcab.2020.101517

Dhanislas, M., Sampath, S., Shamya, M., Joseph, J., Yasasve, M., Ahmed, M.Z., Alqahtani, A.S., Kazmi, S., Asaithambi, P., and Suresh, A. 2023. Green synthesis of biofabricated silver nanoparticles from Syzygium aromaticum seeds: spectral characterization and evaluation of its anti-mycobacterial activity, cytotoxicity assessment on zebrafish embryo and Artemia salina. Materials Technology 38(1): 2269358. 10.1080/10667857.2023.2269358

Dobrucka, R., Szymanski, M., and Przekop, R. 2019. The study of toxicity effects of biosynthesized silver nanoparticles using Veronica officinalis extract. International Journal of Environmental Science and Technology 16(12): 8517–8526. 10.1007/s13762-019-02441-0

Dutta, P.P., Bordoloi, M., Gogoi, K., Roy, S., Narzary, B., Bhattacharyya, D.R., Mohapatra, P.K., and Mazumder, B. 2017. Antimalarial silver and gold nanoparticles: green synthesis, characterization and in vitro study. Biomedicine & Pharmacotherapy 91: 567–580. 10.1016/j.biopha.2017.04.032

Esmaile, F., Koohestani, H., and Abdollah-Pour, H. 2020. Characterization and antibacterial activity of silver nanoparticles green synthesized using Ziziphora clinopodioides extract. Environmental Nanotechnology, Monitoring & Management 14: 100303. 10.1016/j.enmm.2020.100303

Firdhouse, M.J., and Lalitha, P. 2016. Biogenic silver nanoparticles–synthesis, characterization and its potential against cancer inducing bacteria. Journal of Molecular Liquids 222: 1041–1050. 10.1016/j.molliq.2016.07.141

Ganeshkumar, M., Sastry, T.P.M., Kumar, S., Dinesh, M.G., Kannappan, S., and Suguna, L. 2012. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: preparation, characterization and toxicity studies in zebrafish embryo model. Materials Research Bulletin 47(9): 2113–2119. 10.1016/j.materresbull.2012.06.015

Ghojavand, S., Madani, M., and Karimi, J. 2020. Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of felty germander. Journal of Inorganic and Organometallic Polymers and Materials 30: 2987–2997. 10.1007/s10904-020-01449-1

Girigoswami, A., Meenakshi, S., Deepika, B., Harini, K., Gowtham, P., Pallavi, P., and Girigoswami, K. 2024. Beneficial effects of bioinspired silver nanoparticles on zebrafish embryos including a gene expression study. ADMET and DMPK 12(1): 177–192. 10.5599/admet.2102

Han, H.S., Koo, S.Y., and Choi, K.Y. 2022. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials 14: 182–205. 10.1016/j.bioactmat.2021.11.027

Haris, Z., and Ahmad, I. 2024. Green synthesis of silver nanoparticles using Moringa oleifera and its efficacy against gram-negative bacteria targeting quorum sensing and biofilms. Journal of Umm Al-Qura University for Applied Sciences 10(1): 156–167. 10.1007/s43994-023-00089-8

Hemlata, P.R.M., Singh, A.P., and Tejavath, K.K. 2020. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 5(10): 5520–5528. 10.1021/acsomega.0c00155

Hu, D., Gao, T., Kong, X., Jinhong F.N.M., Meng, L., Duan, X., Hu, C.Y., Chen, W., and Feng, Z. 2022. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26. Plos One 17(8): e0271408. 10.1371/journal.pone.0271408

Huh, A.J., and Kwon, Y.J. 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release 156(2): 128–145. 10.1016/j.jconrel.2011.07.002

Jabbar, A., Abbas, A., Assad, N., Naeem-ul-Hassan, M., Alhazmi, H.A., Najmi, A., Zoghebi, K., Al Bratty, M., Hanbashi, A., and Amin, H.M.A. 2023. A highly selective Hg2+ colorimetric sensor and antimicrobial agent based on green synthesized silver nanoparticles using Equisetum diffusum extract. RSC Advances 13(41): 28666–28675. 10.1039/D3RA05070J

Jain, N., Jain, P., Rajput, D., and Patil, U.K. 2021. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters 9(1): 5. 10.1186/s40486-021-00131-6

Jamkhande, P.G., Ghule, N.W., Bamer, A.H., and Kalaskar, M.G. 2019. Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology 53: 101174. 10.1016/j.jddst.2019.101174

Jeevanandam, J., Krishnan, S., Hii, Y.S., Pan, S., Chan, Y.S., Acquah, C., Danquah, M.K., and Rodrigues, J. 2022. Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. Journal of Nanostructure in Chemistry 12(5): 1–23. 10.1007/s40097-021-00465-y

Jemilugba, O.T., Parani, S., Mavumengwana, V., and Oluwafemi, O.S. 2019. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid and Interface Science Communications 31: 100191. 10.1016/j.colcom.2019.100191

Kagithoju, S., Godishala, V., and Nanna, R.S. 2015. Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn. F., and their bactericidal activities. 3 Biotech 5: 709–714. 10.1007/s13205-014-0272-3

Kajani, A.A., Bordbar, A-K., Esfahani, S.H.Z., Khosropour, A.R., and Razmjou, A. 2014. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Advances 4(106): 61394–61403. 10.1039/C4RA08758E

Karuppiah, M., and Rajmohan, R. 2013. Green synthesis of silver nanoparticles using Ixora coccinea leaves extract. Materials Letters 97:141–143. 10.1016/j.matlet.2013.01.087

Kathiravan, V., Ravi, S., Ashokkumar, S., Velmurugan, S., Elumalai, K., and Khatiwada, C.P. 2015. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 139: 200–205. 10.1016/j.saa.2014.12.022

Keshari, A., Srivastava, R., Yadav, S., Nath, G., and Gond, S. 2020. Synergistic activity of green silver nanoparticles with antibiotics. Nanomedicine Research Journal 5(1): 44–54.

Khan, H.A., Ghufran, M., Shams, S., Jamal, A., Khan, A., Abdullah, A., Zuhier, A., and Khan, M.I. 2023. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Frontiers in Pharmacology 14: 1194809. 10.3389/fphar.2023.1194809

Kora, A.J., and Rastogi, L. 2018. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arabian Journal of Chemistry 11(7): 1097–1106. 10.1016/j.arabjc.2015.06.024

Labulo, A.H., David, O.A., and Terna, A.D. 2022. Green synthesis and characterization of silver nanoparticles using Morinda lucida leaf extract and evaluation of its antioxidant and antimicrobial activity. Chemical Papers 76(12): 7313–7325. 10.1007/s11696-022-02392-w

Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., and Zhang, Q. 2007. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry 9(8): 852–858. 10.1039/b615357g

Mahiuddin, Md., Saha, P., and Ochiai, B. 2020. Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials 10(9): 1777. 10.3390/nano10091777

Mahmoodi, E., Hassan, K., Abolghasem A., and Bordbar, A-K. 2018. Green synthesis of silver nanoparticles using flower extract of Malva sylvestris and investigation of their antibacterial activity. IET Nanobiotechnology 12(4): 412–416. 10.1049/iet-nbt.2017.0166

Masum, Md., Mahidul, I., Siddiqa, M.M., Ali, K.A., Zhang, Y., Abdallah, Y., Ibrahim, E., Qiu, W., Yan, C., and Li, B. 2019. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Frontiers in Microbiology 10: 820. 10.3389/fmicb.2019.00820

Mohanta, Y.K., Panda, S.K., Jayabalan, R., Sharma, N., Bastia, A.K., and Mohanta, T.K. 2017. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Frontiers in Molecular Biosciences 4: 14. 10.3389/fmolb.2017.00014

Mollick, M.M.R., Rana, D., Dash, S.K., Chattopadhyay, S., Bhowmick, B., Maity, D., Mondal, D., Pattanayak, S., Roy, S., and Chakraborty, M. 2019. Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry 12(8): 2572–2584. 10.1016/j.arabjc.2015.04.033

Mortazavi-Derazkola, S., Yousefinia, A., Naghizadeh, A., Lashkari, S., and Hosseinzadeh, M. 2021. Green synthesis and characterization of silver nanoparticles using Elaeagnus angustifolia bark extract and study of its antibacterial effect. Journal of Polymers and the Environment 29(March): 3539–3547. 10.1007/s10924-021-02122-5

Narayanan, M., Divya, S., Natarajan, D., Senthil-Nathan, S., Kandasamy, S., Chinnathambi, A., Alahmadi, T.A., and Pugazhendhi, A. 2021. Green synthesis of silver nanoparticles from aqueous extract of Ctenolepis garcini L., and assess their possible biological applications. Process Biochemistry 107: 91–99. 10.1016/j.procbio.2021.05.008

Nishanthi, R., Malathi, S., and Palani, P. 2019. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Materials Science and Engineering: C 96: 693–707. 10.1016/j.msec.2018.11.050

Noppradit, B., Chaiyosburana, S., Khupsathianwong, N., Aemaeg, T., Weena, W., Yupa and Phengdaam, A. 2023. Green synthesis of silver nanoparticles using Saccharum officinarum leaf extract for antiviral paint. Green Processing and Synthesis 12(1): 20230172. 10.1515/gps-2023-0172

Ochieng, M.A., Bakrim, W.B., Bitchagno, G.T.M., Mahmoud, M.F., and Sobeh, M. 2022. Syzygium jambos L. Alston: an insight into its phytochemistry, traditional uses, and pharmacological properties. Frontiers in Pharmacology 13: 786712. 10.3389/fphar.2022.786712

Palithya, S., Gaddam, S.A., Kotakadi, V.S., Penchalaneni, J., and Challagundla, V.N. 2021. Biosynthesis of silver nanoparticles using leaf extract of Decaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications. Green Chemistry Letters and Reviews 14(1): 137–152. 10.1080/17518253.2021.1876172

Pandey, S., Mewada, A., Thakur, M., Shinde, S., Shah, R., Oza, G., and Sharon, M. 2013. Rapid biosynthesis of silver nanoparticles by exploiting the reducing potential of Trapa bispinosa peel extract. Journal of Nanoscience 2013(1): 516357. 10.1155/2013/516357

Patel, J., Kumar, G.S., Roy, H., Maddiboyina, B., Leporatti, S., and Bohara, R.A. 2024. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. Discover Nano 19(1): 1–24. 10.1186/s11671-024-04021-9

Patra, J.K., and Baek, K-H. 2017. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Frontiers in Microbiology 8: 167. 10.3389/fmicb.2017.00167

Paulkumar, K, Gnanajobitha, G., Vanaja, M., Rajeshkumar, S., Malarkodi, C., Pandian, K., and Annadurai, G. 2014. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Scientific World Journal 2014(1): 829894. 10.1155/2014/829894

Priya, L.B., Balasubramanian, B., Shanmugaraj, B., Subbiah, S., Hu, R-M., Huang, C-Y., and Baskaran, R. 2022. Therapeutic potential of the medicinal plant Tinospora cordifolia–minireview. Phyton (0031–9457) 91(6): 1129–1140. 10.32604/phyton.2022.017707

Priya, L.B, Baskaran, R., and Vijaya P.V. 2017. Phytonanoconjugates in oral medicine. In Ecaterina, A., Alexandru, M.G. (eds.): Nanostructures for Oral Medicine. Elsevier, Amsterdam, the Netherlands, pp. 639–668. 10.1016/B978-0-323-47720-8.00022-5

Pulit-Prociak, J., Grabowska, A., Chwastowski, J., Majka, T.M., and Banach, M. 2019. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids and Surfaces B: Biointerfaces 183: 110416. 10.1016/j.colsurfb.2019.110416

Ragunathan, R., Velusamy, S., Nallasamy, J.L., Shanmugamoorthy, M., Johney, J., Veerasamy, S., Gopalakrishnan, D., Nithyanandham, M., Balamoorthy, D., and Velusamy, P. 2022. Synthesis and enhanced photocatalytic activity of zinc oxide-based nanoparticles and its antibacterial activity. Journal of Nanomaterials 2022(1): 3863184. 10.1155/2022/3863184

Rawa, A., Syahfriena, M., Mazlan, M.K.N., Ahmad, R., Nogawa, T., and Wahab, H.A. 2022. Roles of Syzygium in anti-cholinesterase, anti-diabetic, anti-inflammatory, and antioxidant: from Alzheimer’s perspective. Plants 11(11): 1476. 10.3390/plants11111476

Reddy, N.J., Vali, N.D., Rani, M., and Rani, S.S. 2014. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Materials Science and Engineering: C 34: 115–122. 10.1016/j.msec.2013.08.039

Roy, S., Hazra, B., Mandal, N., and Chaudhuri, T.K. 2013. Assessment of the antioxidant and free radical scavenging activities of methanolic extract of Diplazium esculentum. International Journal of Food Properties 16(6): 1351–1370. 10.1080/10942912.2011.587382

Rudrappa, M., Rudayni, H.A., Assiri, R.A., Bepari, A., Basavarajappa, D.S., Nagaraja, S.K., Chakraborty, B., Swamy, P.S., Agadi, S.N., and Niazi, S.K. 2022. Plumeria alba-mediated green synthesis of silver nanoparticles exhibits antimicrobial effect and anti-oncogenic activity against glioblastoma U118 MG cancer cell line. Nanomaterials 12(3): 493. 10.3390/nano12030493

Safa, M.A.T., and Koohestani, H. 2024. Green synthesis of silver nanoparticles with green tea extract from silver recycling of radiographic films. Results in Engineering 21: 101808. 10.1016/j.rineng.2024.101808

Sharma, A.R., Sharma, G., Nath, S., and Lee, S-S. 2024. Screening the phytochemicals in Perilla leaves and phytosynthesis of bioactive silver nanoparticles for potential antioxidant and wound-healing application. Green Processing and Synthesis 13(1): 20240050. 10.1515/gps-2024-0050

Sharma, V.K., Yngard, R.A., and Lin, Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science 145(1–2): 83–96. 10.1016/j.cis.2008.09.002

Shi, J., Xia, Y., Wang, H., Yi, Z., Zhang, R., and Zhang, X. 2022. Piperlongumine is an NLRP3 inhibitor with anti-inflammatory activity. Frontiers in Pharmacology 12: 818326. 10.3389/fphar.2021.818326

Siddique, M.H., Sadia, M., Muzammil, S., Saqalein, M., Ashraf, A., Hayat, S., Saba, S., Khan, A.M., Hashem, A., and Avila-Qezada, G.D. 2024. Biofabrication of copper oxide nanoparticles using Dalbergia sisso leaf extract for antibacterial, antibiofilm and antioxidant activities. Scientific Reports 14(1): 31867. 10.1038/s41598-024-83199-5

Sonbol, H., Ameen, F., Al Yahya, S., Almansob, A., and Alwakeel, S. 2021. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells. Scientific Reports 11(1): 5444. 10.1038/s41598-021-84794-6

Sukweenadhi, J., Setiawan, K.I., Avanti, C., Kartini, K., Rupa, E.J., and Yang, D-C. 2021. Scale-up of green synthesis and characterization of silver nanoparticles using ethanol extract of Plantago major L. leaf and its antibacterial potential. South African Journal of Chemical Engineering 38(1): 1–8. 10.1016/j.sajce.2021.06.008

Tarannum, N., and Gautam, Y.K. 2019. Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Advances 9(60): 34926–34948. 10.1039/C9RA04164H

Uddin, A.B.M.N., Hossain, F., Ali Reza, A.S.M., Nasrin, M.S., and Alam, A.H.M.K. 2022. Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: a review. Food Science & Nutrition 10(6): 1789–1819. 10.1002/fsn3.2797

Wang, F., Niu, X., Wang, W., Jing, W., Huang, Y., and Zhang, J. 2018. Green synthesis of Pd nanoparticles via extracted polysaccharide applied to glucose detection. Journal of the Taiwan Institute of Chemical Engineers 93: 87–93. 10.1016/j.jtice.2018.08.022

Wang, Z., and Tang, M. 2021. Research progress on toxicity, function, and mechanism of metal oxide nanoparticles on vascular endothelial cells. Journal of Applied Toxicology 41(5): 683–700. 10.1002/jat.4121

Wehmas, L.C., Anders, C., Chess, J., Punnoose, A., Pereira, C.B., Greenwood, J.A., and Tanguay, R.L. 2015. Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicology Reports 2: 702–715. 10.1016/j.toxrep.2015.03.015

Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z-S., and Chen, G. 2015. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today 20(5): 595–601. 10.1016/j.drudis.2014.11.014

Xia, G., Liu, T., Wang, Z., Hou, Y., Dong, L., Zhu, J., and Qi, J. 2016. The effect of silver nanoparticles on zebrafish embryonic development and toxicology. Artificial Cells, Nanomedicine, and Biotechnology 44(4): 1116–1121.

Yassin, M.T., Mostafa, A.A-F., Al-Askar, A.A., and Al-Otibi, F.O. 2022. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals 12(8): 1057. 10.3390/cryst12081057

Zhang, X-F., Liu, Z-G., Shen, W., and Gurunathan, S. 2016. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences 17(9): 1534. 10.3390/ijms17091534

Zia, F., Ghafoor, N., Iqbal, M., and Mehboob, S. 2016. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Applied Nanoscience 6: 1023–1029. 10.1007/s13204-016-0517-z