Essential oil from Curcuma phaeocaulis Val.: Chemical composition and anti-inflammatory activities via integrated multi-omics analysis in a zebrafish tail fin amputated model
Main Article Content
Keywords
Curcuma phaeocaulis Val, essential oil, inflammation, metabolomics, transcriptomics, zebrafish
Abstract
Curcuma phaeocaulis Val. is a widely accessible herbal remedy in the Chinese medicinal materials market, yet research on the in vivo anti-inflammatory effects of its essential oil (ZTO) components remains somewhat limited. This study aims to evaluate the chemical composition and anti-inflammatory properties of the ZTO. The chemical composition of the ZTO was analyzed by employing gas chromatography coupled with mass spectrometry, and its anti-inflammatory properties were utilized using a zebrafish tail fin amputation model. The systematic regulatory effects on gene expression and metabolic levels were detected and analyzed using multiomics analysis, including transcriptomics and metabolomics. Thirty-five compounds were identified in ZTO, with curzerene being the main component, comprising 37.90% of the total. ZTO demonstrated significant anti-inflammatory properties by reducing neutrophil migration in zebrafish tail fin amputation models. Transcriptomics and metabolomics analyses showed that ZTO modulates inflammation through multiple pathways, aiding in the restoration of homeostasis and energy balance. These findings deepen our understanding of the anti-inflammatory mechanisms of ZTO and highlight its potential in cosmetics, food, and pharmaceuticals, emphasizing the need for further research to enhance the use of C. phaeocaulis Val. and related industrial products.
References
Ammar, N.M., Hassan, H.A., Ahmed, R.F., El-Gendy, A.E.G., Abd-ElGawad, A.M., Farrag, A.R.H., et al. 2022. Gastro-protective effect of Artemisia Sieberi essential oil against ethanol-induced ulcer in rats as revealed via biochemical, histopathological and metabolomics analysis. Biomarkers 27(3): 247–257. 10.1080/1354750X.2021.2025428
Buchbauer, G., 2000. The detailed analysis of essential oils leads to the understanding of their properties. Chemical Weekly-Bombay 45(49): 163–165.
Cheng, J., Fu, Y., Meng, X., Tang, G., Li, L., Yusupov, Z., et al. 2025. Investigation of anti-inflammatory effect of essential oil extracted from Achillea alpina L. through multi-omics analysis in zebrafish tail fin amputation model. Journal of Ethnopharmacology 344: 119519. 10.1016/j.jep.2025.119519
Chopra, D., Shukla, S., Rana, P., Kamar, M.D., Gaur, P., Bala, M., et al. 2024. Overview of Inflammation. In: Tripathi, A., Dwivedi, A., Gupta, S., and Poojan, S., editors. Inflammation resolution and chronic diseases. Singapore: Springer Nature. pp. 1–18. 10.1007/978-981-97-0157-5_1
Cui, X., Wei, W., Zhang, Z., Liu, K., Zhao, T., Zhang, J., et al. 2024. Caffeine impaired acupuncture analgesia in inflammatory pain by blocking adenosine A1 receptor. The Journal of Pain 25(4): 1024–1038. 10.1016/j.jpain.2023.10.025
De Cicco, P., Ercolano, G., Sirignano, C., Rubino, V., Rigano, D., Ianaro, A., et al. 2023. Chamomile essential oils exert anti-inflammatory effects involving human and murine macrophages: Evidence to support a therapeutic action. Journal of Ethnopharmacology 311: 116391. 10.1016/j.jep.2023.116391
Dhanasiri, A.K.S., Fernandes, J.M.O., and Kiron, V., 2012. Glutamine synthetase activity and the expression of three glul paralogues in zebrafish during transport. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 163(3): 274–284. 10.1016/j.cbpb.2012.06.003
dos Santos, E., Leitão, M.M., Aguero Ito, C.N., Silva-Filho, S.E., Arena, A.C., Silva-Comar, F.M.d.S., et al. 2021. Analgesic and anti-inflammatory articular effects of essential oil and camphor isolated from Ocimum kilimandscharicum Gürke leaves. Journal of Ethnopharmacology 269: 113697. 10.1016/j.jep.2020.113697
Eelen, G., Dubois, C., Cantelmo, A.R., Goveia, J., Brüning, U., DeRan, M., et al. 2018. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis. Nature 561(7721): 63–69. 10.1038/s41586-018-0466-7
Eichwald, T., Solano, A.F., Souza, J., de Miranda, T.B., Carvalho, L.B., dos Santos Sanna, P.L., et al. 2023. Anti-inflammatory effect of caffeine on muscle under lipopolysaccharide-induced inflammation. Antioxidants 12(3): 554. 0.3390/antiox12030554
Enriquez, A.B., ten Caten, F., Ghneim, K., Sekaly, R.-P., and Sharma, A.A., 2023. Regulation of immune homeostasis, inflammation, and HIV persistence by the microbiome, short-chain fatty acids, and bile acids. Annual Review of Virology 10(10): 397–422. 10.1146/annurev-virology-040323-082822
Froz, M.J.d.L., Barros, L.d.S.P., de Jesus, E.N.S., Tavares, M.S., Mourão, R.H.V., Silva, R.C., et al. 2024. Lippia alba essential oil: A powerful and valuable antinociceptive and anti-inflammatory medicinal plant from Brazil. Journal of Ethnopharmacology 333: 118459. 10.1016/j.jep.2024.118459
Grigore, A., Vatasescu-Balcan, A., Stoleru, S., Zugravu, A., Poenaru, E., Engi, M., et al. 2024. Experimental research on the influence of ion channels on the healing of skin wounds in rats. Processes 12(1): 109. 10.3390/pr12010109
Guzior, D.V., and Quinn, R.A., 2021. Review: Microbial transformations of human bile acids. Microbiome 9(1): 140. 10.1186/s40168-021-01101-1
He, M., Halima, M., Xie, Y., Schaaf, M.J.M., Meijer, A.H., and Wang, M., 2020. Ginsenoside Rg1 acts as a selective glucocorticoid receptor agonist with anti-inflammatory action without affecting tissue regeneration in zebrafish larvae. Cells 9(5): 1107. 10.3390/cells9051107
Huang, K., Liu, R., Zhang, Y., and Guan, X., 2021. Characteristics of two cedarwood essential oil emulsions and their antioxidant and antibacterial activities. Food Chemistry 346: 128970. 10.1016/j.foodchem.2020.128970
Jaradat, N., Qneibi, M., Hawash, M., Al-Maharik, N., Qadi, M., Abualhasan, M.N., et al. 2022. Assessing Artemisia arborescens essential oil compositions, antimicrobial, cytotoxic, anti-inflammatory, and neuroprotective effects gathered from two geographic locations in Palestine. Industrial Crops and Products 176: 114360. 10.1016/j.indcrop.2021.114360
Jia, W., Wei, M., Rajani, C., and Zheng, X., 2021. Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein & Cell 12(5): 411–425. 10.1007/s13238-020-00804-9
Le, T.T., Ha, M.T., Lee, G.S., Nguyen, V.P., Kim, C.S., Kim, J.A., et al. 2025. Terpenoids and steroids from aerial parts of Achillea alpina L. as PTP1B inhibitors: Kinetic analysis and molecular docking studies. Phytochemistry 229: 114269. 10.1016/j.phytochem.2024.114269
Lee, H.J., Sim, M.O., Woo, K.W., Jeong, D.-E., Jung, H.K., An, B., et al. 2019. Antioxidant and antimelanogenic activities of compounds isolated from the aerial parts of Achillea alpina L. Chemistry & Biodiversity 16(7): e1900033. 10.1002/cbdv.201900033
Leite, J.A., Isaksen, T.J., Heuck, A., Scavone, C., and Lykke-Hartmann, K., 2020. The α2 Na+/K+-ATPase isoform mediates LPS-induced neuroinflammation. Scientific Reports 10(1): 14180. 10.1038/s41598-020-71027-5
Li, X.-W., Yue, H.-C., Wu, X., Guo, Q., Tian, J.-Y., Liu, Z.-Y., et al. 2022. Neuroprotective alkamides from the aerial parts of Achillea alpina L. Chemistry & Biodiversity 19(7): e202200218. 10.1002/cbdv.202200218
Li, X., Zheng, S., and Wu, G., 2020. Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52(5): 671–691. 10.1007/s00726-020-02851-2
Li, Y.-x., Erhunmwunsee, F., Liu, M., Yang, K., Zheng, W., and Tian, J., 2022. Antimicrobial mechanisms of spice essential oils and application in food industry. Food Chemistry 382: 132312. 10.1016/j.foodchem.2022.132312
Liu, P.-S., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., et al. 2017. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunology 18(9): 985–994. 10.1038/ni.3796
Liu, R., Gao, Y., Huang, L., Shi, B., Yin, X., and Zou, S., 2023. Alpha-ketoglutarate up-regulates autophagic activity in peri-implant environment and enhances dental implant osseointegration in osteoporotic mice. Journal of Clinical Periodontology 50(5): 671–683. 10.1111/jcpe.13784
Ma, Y., Bao, Y., Wang, S., Li, T., Chang, X., Yang, G., et al. 2016. Anti-inflammation effects and potential mechanism of Saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. Inflammation 39(4): 1453–1461. 10.1007/s10753-016-0377-4
Nigam, M., Mishra, A.P., Deb, V.K., Dimri, D.B., Tiwari, V., Bungau, S.G., et al. 2023. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomedicine & Pharmacotherapy 164: 115015. 10.1016/j.biopha.2023.115015
Panchal, N.K., and Prince Sabina, E., 2023. Non-steroidal anti-inflammatory drugs (NSAIDs): A current insight into its molecular mechanism eliciting organ toxicities. Food and Chemical Toxicology 172: 113598. 10.1016/j.fct.2022.113598
Riggs, T.E., Shafer, A.W., and Guenter, C.A., 1973. Acute changes in oxyhemoglobin affinity effects on oxygen transport and utilization. The Journal of Clinical Investigation 52(10): 2660–2663. 10.1172/JCI107459
Süntar, I., 2020. Importance of ethnopharmacological studies in drug discovery: Role of medicinal plants. Phytochemistry Reviews 19(5): 1199–1209. 10.1007/s11101-019-09629-9
Tall, A.R., and Yvan-Charvet, L., 2015. Cholesterol, inflammation and innate immunity. Nature Reviews Immunology 15(2): 104–116. 10.1038/nri3793
Tang, Y.-Y., Wang, D.-C., Wang, Y.-Q., Huang, A.-F., and Xu, W.-D., 2023. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Frontiers in Immunology 13: 1073971. 10.3389/fimmu.2022.1073971
Williams, A.E., and Chambers, R.C., 2016. Neutrophils and tissue damage: Is hypoxia the key to excessive degranulation? Thorax 71(11): 977. 10.1136/thoraxjnl-2016-208879
Wu, G., 2009. Amino acids: Metabolism, functions, and nutrition. Amino Acids 37(1): 1–17. 10.1007/s00726-009-0269-0
Xiang, Y., Zhang, M., Jiang, D., Su, Q., and Shi, J., 2023. The role of inflammation in autoimmune disease: a therapeutic target. Frontiers in Immunology 14. 10.3389/fimmu.2023.1267091
Xue, G.-M., Zhao, C.-G., Xue, J.-F., Duan, J.-J., Pan, H., Jia, Y.-Y., et al. 2023. Monomeric and dimeric guaianolide sesquiterpenoids with hypoglycemic activity from Achillea alpina. Fitoterapia 166: 105472. 10.1016/j.fitote.2023.105472
Zhang, L., Yang, Z., Wei, J., Su, P., Pan, W., Zheng, X., et al. 2017. Essential oil composition and bioactivity variation in wild-growing populations of Curcuma phaeocaulis Valeton collected from China. Industrial Crops and Products 103: 274–282. 10.1016/j.indcrop.2017.04.019
