Polysaccharide-based biopolymers: exploring film fabrication techniques, molecular interactions, and their potential food applications

Main Article Content

Pir Mohammad Junaid
Akuleti Saikumar
Rayees Ul Islam
Manoj Kumar Patel
Don Hettiarachchige Udana Eranda
Makdud Islam
Sadaf Zaidi
Laxmikant S. Badwaik

Keywords

Biopolymers; Food Packaging; Functional ingredients; Packaging films; Polysaccharides

Abstract

Polysaccharide-based biopolymers have emerged as sustainable alternatives to conventional petroleum-derived plastics in food packaging because of their natural abundance, biodegradability, and film-forming ability. Common polysaccharides, such as starch, cellulose, alginate, and chitosan, offer eco-friendly packaging solutions that reduce environmental impact while maintaining food quality. This review explores the development of polysaccharides-based films, emphasizing recent advances in their mechanical, barrier, and functional properties. Various fabrication methods and the incorporation of bioactive compounds have significantly improved their antimicrobial and antioxidant performance, contributing to enhanced shelf life and safety of packaged foods. The integration of nanomaterials has addressed limitations, such as poor water resistance and mechanical weakness, enabling the creation of nanocomposite systems with superior properties. The review discusses regulatory aspects, biodegradability, and challenges in commercializing these materials, including cost, scalability, and compliance. A special focus is placed on the molecular-level interactions between polysaccharides and additives, which play a crucial role in determining the stability and functionality of films. Polysaccharide-based biopolymers present a promising pathway toward environmentally responsible, active, and intelligent packaging solutions in the food industry.

Abstract 621 | PDF Downloads 311 XML Downloads 57 HTML Downloads 0

References

Abedini, A.A., Pircheraghi, G. and Kaviani, A. 2022. The role of calcium crosslinking and glycerol plasticizing on the physical and mechanical properties of superabsorbent. Journal of Polymer Research 30(1): 20. https://doi.org/10.1007/s10965-022-03397-5
Afoakwah, N.A., Komla, M.G., Ali, A. and Ahmed, S. 2023. Extraction, structural properties, and applications of carrageenan gum. In: Ahmed, S. and Ali, A. (eds.). Natural Gums: Extraction, Properties, and Applications, Chap. 24. Elsevier, Amsterdam, the Netherlands, pp. 647–668. https://doi.org/10.1016/B978-0-323-99468-2.00024-3.
Akman, P.K., Bozkurt, F., Dogan, K., Tornuk, F. and Tamturk, F. 2021. Fabrication and characterization of probiotic lactobacillus plantarum loaded sodium alginate edible films. Journal of Food Measurement and Characterization 15(1): 84–92. https://doi.org/10.1007/s11694-020-00619-6
Albadran, H.A, Monteagudo-Mera, A., Khutoryanskiy, V.V. and Charalampopoulos, D. 2020. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Applied Microbiology and Biotechnology 104(13): 5749–5757. https://doi.org/10.1007/s00253-020-10632-w
Aloui, H., Deshmukh, A.R., Khomlaem, C. and Kim, B.S. 2021. Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocolloids 113(April): 106508. https://doi.org/10.1016/j.foodhyd.2020.106508
Amin, U., Khan, M.U., Majeed, Y. Rebezov, M., Khayrullin, M., Bobkova, E., Shariati, M.A., Chung, I.M. and Thiruvengadam, M. 2021. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. International Journal of Biological Macromolecules 183: 2184–2198. https://doi.org/10.1016/j.ijbiomac.2021.05.182
Ardebilchi M.S., Almasi, H. and Marand, N.A. 2021. Chitosan-based nanocomposite films incorporated with NiO nanoparticles: physicochemical, photocatalytic and antimicrobial properties. International Journal of Biological Macromolecules 190: 667–678. https://doi.org/10.1016/j.ijbiomac.2021.09.024
Arfat, Y.A., Ejaz, M., Jacob, H. and Ahmed, J. 2017. Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers 157: 65–71. https://doi.org/10.1016/j.carbpol.2016.09.069
Athanasopoulou, E., Bigi, F., Maurizzi, E., Iris, E., Karellou, E., Pappas, C.S., Quartieri, A. and Tsironi, T. 2024. Synthesis and characterization of polysaccharide-and protein-based edible films and application as packaging materials for fresh fish fillets. Scientific Reports 14(1): 517.
Awasthi, S.K., Kumar, M., Kumar, V., Sarsaiya, S., Anerao, P., Ghosh, P., Singh, L., Liu, H., Zhang, Z. and Awasthi, M.K. 2022. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. Environmental Pollution 307: 119600. https://doi.org/10.1016/j.envpol.2022.119600
Azucena Castro-Yobal, M., Contreras-Oliva, A., Saucedo-Rivalcoba, V., Rivera-Armenta, J.L., Hernández-Ramírez, G., Salinas-Ruiz, J. and Herrera-Corredor, A. 2021. Evaluation of physicochemical properties of film-based alginate for food packing applications. E-Polymers 21(1): 82–95. https://doi.org/10.1515/epoly-2021-0011
Bajić, M., Ročnik, T., Oberlintner, A., Scognamiglio, F., Novak, U. and Likozar, B. 2019. Natural plant extracts as active components in chitosan-based films: a comparative study. Food Packaging and Shelf Life 21: 100365.
Bashir, T., Islam, R.U., Junaid, P.M., Naseem, S., Khan, T., Naseem, S., Andrabi, S.H. and Azad, A.A. 2025. Cross-linked carrageenan/alginate bio-nanocomposite film with citrus limetta peel extract and copper oxide nanoparticles: fabrication, characterization and application. Food Hydrocolloids 168: 111537. https://doi.org/10.1016/j.foodhyd.2025.111537
Benalaya, I., Alves, G., Lopes, J. and Silva, L.R. 2024. A review of natural polysaccharides: sources, characteristics, properties, food, and pharmaceutical applications. International Journal of Molecular Sciences 25(2): 1322. https://doi.org/10.3390/ijms25021322
Beukelaer, H de, Chu, S., Esposito, C., Hilhorst, M. and Chacon, F.A. 2024. Replacing fossil-based foams with (potato) carbohydrate based foams. Wageningen Environmental Research 2562: 4.
Bhatia, S., Shah, Y.A., Al-Harrasi, A., Jawad, M., Koca, E. and Aydemir, L.Y. 2024. Enhancing tensile strength, thermal stability, and antioxidant characteristics of transparent kappa carrageenan films using grapefruit essential oil for food packaging applications. ACS Omega 9(8): 9003–9012. https://doi.org/10.1021/acsomega.3c07366
Biehl, P. and Zhang, K. 2024. Introduction to advances in bio-based polymers: chemical structures and functional properties at the interface. In K. Zhang & P. Biehl (Eds.), Green by design: Harnessing the power of bio-based polymers at interfaces (pp. 1–1). IOP Publishing. https://doi.org/10.1088/978-0-7503-6184-2ch1.
Bravin, B, Peressini, D. and Sensidoni, A. 2004. Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. Journal of Agricultural and Food Chemistry 52(21): 6448–6455. https://doi.org/10.1021/jf040065b
Chaudhary, S., Jain, V.P. and Jaiswar, G. 2022. The composition of polysaccharides: monosaccharides and binding, group decorating, polysaccharides chains. In: Singh, P., Manzoor, K., Ikram, S. and Kumar, P. (eds.) Innovation in Nano-Polysaccharides for Eco-sustainability: From Science to Industrial Applications, Chap. 4. Elsevier, Amsterdam, The Netherlands, pp. 83–118. https://doi.org/10.1016/B978-0-12-823439-6.00005-2
Ciriminna, R., Ghahremani, M., Karimi, B. and Pagliaro, M. 2023. Emerging green routes to nanocellulose. Biofuels, Bioproducts and Biorefining 17(1): 10–17. https://doi.org/10.1002/bbb.2423
Cruz, Rui MS, Krauter, V., Krauter, S., Agriopoulou, S., Weinrich, R., Herbes, C., Scholten, Philip BV, Uysal-Unalan, I., Sogut, E. and Kopacic, S. 2022. Bioplastics for food packaging: environmental impact, trends and regulatory aspects. Foods 11(19): 3087. https://doi.org/10.3390/foods11193087
Das, A., Ringu, T., Ghosh, S. and Pramanik, N. 2023. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polymer Bulletin 80(7): 7247–7312. https://doi.org/10.1007/s00289-022-04443-4.
Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J.B., Ghanati, K., Khakpour, M. and Khaksar, R. 2015. Antioxidant and antimicrobial carboxymethyl cellulose films containing zataria multiflora essential oil. International Journal of Biological Macromolecules 72: 606–613. https://doi.org/10.1016/j.ijbiomac.2014.09.006.
Derkach, S.R., Voron’ko, N.G. and Kuchina, Y.A. 2022. Intermolecular interactions in the formation of polysaccharide-gelatin complexes: a spectroscopic study. Polymers 14(14): 2777.
Díaz-Montes, E and Castro-Muñoz, R. 2021. Edible films and coatings as food-quality preservers: an overview. Foods 10(2): 249. https://doi.org/10.3390/foods10020249
Díaz‐Visurraga, J., Meléndrez, M.F., García, A., Paulraj, M. and Cárdenas, G. 2010. Semitransparent chitosan‐TiO2 nanotubes composite film for food package applications. Journal of Applied Polymer Science 116(6): 3503–3515. https://doi.org/10.1002/app.31881
Dong, Y., Rao, Z., Liu, Y., Zheng, X., Tang, K. and Liu, J. 2023. Soluble soybean polysaccharide/gelatin active edible films incorporated with curcumin for oil packaging. Food Packaging and Shelf Life 35: 101039. https://doi.org/10.1016/j.fpsl.2023.101039
Dong, W., Su, J., Chen, Y., Xu, D., Cheng, L., Mao, L., Gao, Y. and Yuan, F. 2022. Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chemistry 373: 131414. https://doi.org/10.1016/j.foodchem.2021.131414
Dutta, D. and Sit, N. 2024. Comprehensive review on developments in starch-based films along with active ingredients for sustainable food packaging. Sustainable Chemistry and Pharmacy 39: 101534. https://doi.org/10.1016/j.scp.2024.101534
Ellen McArthur Foundation. 2018. Closing the Loop on Single-Use Food Packaging: BioPak. Ellen McArthur Foundation, Sydney, Australia.
Eltabakh, M., Kassab, H., Badawy, W., Abdin, M. and Abdelhady, S. 2021. Active bio-composite sodium alginate/maltodextrin packaging films for food containing azolla pinnata leaves extract as natural antioxidant. Journal of Polymers and the Environment 30: 1355–1365. https://doi.org/10.1007/s10924-021-02287-z
Eranda, D.H.U., Chaijan, M., Uysal-Unalan, I., Panpipat, W., Naik, A.S., Dib, A.L., Karnjanapratum, S. and Gagaoua, M. 2024. Biopreservation of pre-processed fresh fish by bio-based coatings: a single strategy with multiple benefits towards waste prevention. Food Bioscience 58: 103696. https://doi.org/10.1016/j.fbio.2024.103696
Estevez-Areco, S., Guz, L., Famá, L., Candal, R. and Goyanes, S. 2019. Bioactive starch nanocomposite films with antioxidant activity and enhanced mechanical properties obtained by extrusion followed by thermo-compression. Food Hydrocolloids 96: 518–528. https://doi.org10.1016/j.foodhyd.2019.05.054
Ezati, P. and Rhim, J-W. 2020. Ph-responsive pectin-based multifunctional films incorporated with curcumin and sulfur nanoparticles. Carbohydrate Polymers 230: 115638. https://doi.org/ 10.1016/j.carbpol.2019.115638
Ezati, P. and Rhim, J-W. 2022. Pectin/carbon quantum dots fluorescent film with ultraviolet blocking property through light conversion. Colloids and Surfaces B: Biointerfaces 219(August): 112804. https://doi.org/10.1016/j.colsurfb.2022.112804
Feng, S., Tang, Q., Xu, Z., Huang, K., Li, H. and Zou, Z. 2023. Development of novel Co-MOF loaded sodium alginate-based packaging films with antimicrobial and ammonia-sensitive functions for shrimp freshness monitoring. Food Hydrocolloids 135: 108193. https://doi.org /10.1016/j.foodhyd.2022.108193.
Flórez, M., Vázquez, M. and Cazón, P. 2023. Enhancing the quality of Havarti cheese: chitosan films with nettle Urtica Dioica L. extract as slice separators to retard lipid oxidation. Lebensmittel-Wissenschaft & Technologie 189: 115504. https://doi.org/10.1016/j.lwt.2023.115504
Gao, L., Yuan, R., Qiao, L., Tu, C., Tan, R. and Xu, S. 2025. Comparative analysis of bio-based plasticizers: biocompatibility, plasticizing mechanisms, and molecular dynamics insights. RSC Advances 15(6): 4487–4495. https://doi.org/10.1039/d4ra07258h
Gupta, V., Yadav, R., Tanwar, R. and Gaikwad, K.K. 2023. Ҡ-Carrageenan-based bio-nanocomposite film reinforced with cellulose nanocrystals derived from amla pomace for food packaging. Biomass Conversion and Biorefinery 13(18): 16899–16908. https://doi.org/10.1007/s13399-021-02028-1
Gutiérrez, T.J, Toro-Márquez, L.A., Merino, D. and Mendieta, J.R. 2019. Hydrogen-bonding interactions and compostability of bionanocomposite films prepared from corn starch and nano-fillers with and without added Jamaica flower extract. Food Hydrocolloids 89: 283–293. https://doi.org/10.1016/j.foodhyd.2018.10.058
Gutiérrez-Jara, C., Bilbao-Sainz, C., McHugh, T., Chiou, B-S, Williams, T. and Villalobos-Carvajal, R. 2020. Physical, mechanical and transport properties of emulsified films based on alginate with soybean oil: effects of soybean oil concentration, number of passes and degree of surface crosslinking. Food Hydrocolloids 109: 106133. https://doi.org/10.1016/j.foodhyd.2020.106133
Guzmán-Pincheira, C., Moeini, A., Oliveira, P.E., Abril, D., Paredes-Padilla, Y.A. and Benavides-Valenzuela,S. 2025. Development of alginate-chitosan bioactive films containing essential oils for use in food packaging. Foods 14(2): 256. https://doi.org/10.3390/foods14020256
Hadi, A., Nawab, A., Alam, F. and Naqvi, S. 2023. Development of sodium alginate–aloe vera hydrogel films enriched with organic fibers: study of the physical, mechanical, and barrier properties for food-packaging applications. Sustainable Food Technology 1(6): 863–873. https://doi.org/10.1039/d3fb00122a
Hamdi, M. 2024. Sustainable Packaging Trends in the Consumer Packaged Goods Market. Harvard University, Extension School. https://www.researchgate.net/publication/383608198_Sustainable_Packaging_Trends_in_the_Consumer_Packaged_Goods_Market.
Hamed, I., Özogul, F. and Regenstein, J.M. 2016. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligo saccharides): a review. Trends in Food Science & Technology 48: 40–50. https://doi.org/10.1016/j.tifs.2015.11.007
Hammoudi, N., Cherif, H.Z., Borsali, F., Benmansour, K. and Meghezzi, A. 2020. Preparation of active antimicrobial and antifungal alginate-montmorillonite/lemon essential oil nanocomposite films. Materials Technology 35(7): 383–394. https://doi.org/10.1080/10667857.2019.1685292
Han, Y., Weng, Y. and Zhang, C. 2024. Development of biobased plasticizers with synergistic effects of plasticization, thermal stabilization, and migration resistance: a review. Journal of Vinyl and Additive Technology 30(1): 26–43. https://doi.org/10.1002/vnl.22048
Hari, K.D., Garcia, C.V., Shin, G.-H. and Kim, J.-T. 2021. Improvement of the UV barrier and antibacterial properties of crosslinked pectin/zinc oxide bionanocomposite films. Polymers. 13(15): 2403. https://doi.org/10.3390/polym13152403
Hassani, D., Sani, I.K. and Pirsa, S. 2024. Nanocomposite film of potato starch and gum arabic containing boron oxide nanoparticles and Anise Hyssop (Agastache foeniculum) essential oil: investigation of physicochemical and antimicrobial properties. Journal of Polymers and the Environment 32(4): 1972–1983. https://doi.org/10.1007/s10924-023-03114-3
Hassanloofard, Z., Gharekhani, M., Zandi, M., Ganjloo, A. and Roufegarinejad, L. 2023. Fabrication and characterization of cellulose acetate film containing Falcaria vulgaris extract. Cellulose 30(11): 6833–6853. https://doi.org/10.1007/s10570-023-05337-y
Islam, M., Saini, P., Das, R., Shekhar, S., Sinha, A. and Prasad, K. 2023. Rice straw as a source of nanocellulose for sustainable food packaging materials: a review. BioResources 18(1): 2351–2385. https://doi.org/10.15376/biores.18.1.Islam
Islam, M., Sanjay, A. and Sinha, K. 2024. Organosolv delignification of rice straw cellulose fiber for functional food packaging. Cellulose 31: 9191–9214. https://doi.org/10.1007/s10570-024-06125-y
Jeya Jeevahan, J., Chandrasekaran, M., Venkatesan, S.P., Sriram, V., Britto Joseph, G., Mageshwaran, G. and Durairaj, R.B. 2020. Scaling up difficulties and commercial aspects of edible films for food packaging: a review. Trends in Food Science & Technology 100: 210–222. https://doi.org/10.1016/j.tifs.2020.04.014
Jiang, S., Lin, K. and Cai, M. 2020. ZnO nanomaterials: current advancements in antibacterial mechanisms and applications. Frontiers in Chemistry 8: 580. https://doi.org/10.3389/fchem.2020.00580
Junaid, Pir M., Ahmad, F., Dar, I.H., Bhat, A.H., Manzoor, S., Pandith, J.A. and Khan, F. 2023. Preservation strategies for fruits and vegetables: past, present, and future scope. In M. R. Goyal & F. Ahmad (Eds.), Quality control in fruit and vegetable processing: Methods and strategies (pp. 143. Apple Academic Press, New York, USA. https://doi.org/10.1201/9781003304999.
Junaid, Pir M. and Zaidi, S. 2024. Enhancing the properties of starch-based edible films through rice bran oil incorporation: a comprehensive investigation of development and characterization. Food Biophysics 19(4): 1114–1124. https://doi.org/10.1007/s11483-024-09883-1
Kang, S., Xiao, Y., Wang, K., Cui, M., Chen, D., Guan, D., Luan, G. and Xu, H. 2021. Development and evaluation of gum arabic-based antioxidant nanocomposite films incorporated with cellulose nanocrystals and fruit peel extracts. Food Packaging and Shelf Life 30: 100768. https://doi.org/10.1016/j.fpsl.2021.100768
Kapila, K., Kirtania, S., Monika Devi, L., Saikumar, A., Badwaik, L.S. and Rather, M.A. 2024. Potential perspectives on the use of poly (vinyl alcohol)/graphene oxide nanocomposite films and its characterization. Journal of Food Measurement and Characterization 18(2): 1012–1025. https://doi.org/10.1007/s11694-023-02264-1
Khanzada, B., Mirza, B. and Ullah, A. 2023. Chitosan-based bio-nanocomposites packaging films with unique mechanical and barrier properties. Food Packaging and Shelf Life 35: 101016. doi.org/10.1016/j.fpsl.2022.101016
Khoirunnisa, A.R., Joni, I., Panatarani, C., Rochima, E. and Praseptiangga, D. 2018. UV-screening, transparency and water barrier properties of semi refined iota carrageenan packaging film incorporated with zno nanoparticles. In A. R. Khoirunnisa, I. M. Joni, C. Panatarani, E. Rochima, & D. Praseptiangga (Eds.),: AIP Conference Proceedings. Vol. 1927. No. 1, p. 030041 AIP Publishing.
Khoshkalampour, A., Ahmadi, S., Ghasempour, Z., Tak, L. and Marjan, L. 2024. Development of a novel film based on casein/modified tragacanth gum enriched by carbon quantum dots for shelf—life extension of butter. Food and Bioprocess Technology 17(5): 1–18. https://doi.org/10.1007/s11947-023-03187-x
Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E. and Hortyńska, P. 2021. Polysaccharides as edible films and coatings: characteristics and influence on fruit and vegetable quality—a review. Agronomy 11(5): 813. https://doi.org/10.3390/agronomy11050813
Kong, M., Guang Chen, X., Xing, K. and Park, H.J. 2010. Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology 144(1): 51–63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
Kouser, S., Sheik, S., Prabhu, A., Nagaraja, G.K., Prashantha, K., D’souza, J.N., Navada, M.K. and Manasa, D.J. 2021. Effects of reinforcement of sodium alginate functionalized halloysite clay nanotubes on thermo-mechanical properties and biocompatibility of polyvinyl alcohol nanocomposites. Journal of the Mechanical Behavior of Biomedical Materials 118: 104441. https://doi.org/10.1016/j.jmbbm.2021.104441
Kurek, M., Hlupić, L., Garofulić, I.E., Descours, E., Ščetar, M. and Galić, K. 2019. Comparison of protective supports and antioxidative capacity of two bio-based films with revalorised fruit pomaces extracted from blueberry and red grape skin. Food Packaging and Shelf Life 20: 100315. https://doi.org/10.1016/j.fpsl.2019.100315
Law, K.L. and Narayan, R. 2022. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials 7(2): 104–116. https://doi.org/10.1038/s41578-021-00382-0
Leaw, Z.E., Kong, I. and Pui, L.P. 2021. 3D printed corn starch–gelatin film with glycerol and hawthorn berry (Crataegus pinnatifida) extract. Journal of Food Processing and Preservation 45(9): e15752. https://doi.org/10.1111/jfpp.15752
Lee, H., Rukmanikrishnan, B. and Lee, J. 2019. Rheological, morphological, mechanical, and water-barrier properties of agar/gellan gum/montmorillonite clay composite films. International Journal of Biological Macromolecules 141: 538–544. https://doi.org/10.1016/j.ijbiomac.2019.09.021
Li, Q., Cai, P., Xiao, H. and Pan, Y. 2023c. PH-responsive color indicator films based on chitosan and purple yam extract for in situ monitoring food freshness. Food Bioscience 56: 103373. https://doi.org/10.1016/j.fbio.2023.103373
Li, Y., Duan, Q., Yue, S., Alee, M. and Liu, H. 2024. Enhancing mechanical and water barrier properties of starch film using Chia mucilage. International Journal of Biological Macromolecules 274: 133288.
Li, C., Liu, J., Li, W., Liu, Z., Yang, X., Liang, B., Huang, Z., Qiu, X., Li, X. and Huang, K. 2023a. Biobased intelligent food-packaging materials with sustained-release antibacterial and real-time monitoring ability. ACS Applied Materials & Interfaces 15(31): 37966–37975.
Li, C., Zheng, C, Huang, H, Su, H. and Huang, C. 2023b. Preparation and plasticizing mechanism of deep eutectic solvent/lignin plasticized chitosan films. International Journal of Biological Macromolecules 240: 124473. https://doi.org/10.1016/j.ijbiomac.2023.124473
Liao, Y., Wang, C., Dong, Y. and Yu, H.-Y. 2023. Robust and versatile superhydrophobic cellulose-based composite film with superior UV shielding and heat-barrier performances for sustainable packaging. International Journal of Biological Macromolecules 253: 127178. https://doi.org/10.1016/j.ijbiomac.2023.127178
Lim, J.W., Lim, W.S. Lee, M.H. and Park, H.J. 2021. Barrier and structural properties of polyethylene terephthalate film coated with poly(acrylic acid)/montmorillonite nanocomposites. Packaging Technology and Science 34(3): 141–150. https://doi.org/10.1002/pts.2547
Lima, G.G.de, Zakaluk, I.C.B., Artner, M.A., Gonzalez de Cademartori, A.C.P.P.H., Muniz, G.I.B.de and Magalhães, W.L.E. 2025. Enhancing barrier and antioxidant properties of nanocellulose films for coatings and active packaging: a review. ACS Applied Nano Materials 8(9): 4421–4397. https://doi.org/10.1021/acsanm.4c04805
Lin, N., Huang, J. and Dufresne, A. 2012. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11): 3274–3294. https://doi.org/10.1039/C2NR30260H
Liu, Y., Liu, R., Shi, J., Zhang, R., Tang, H., Xie, C., Wang, F., Han, J. and Jiang, L. 2023. Chitosan/esterified chitin nanofibers nanocomposite films incorporated with rose essential oil: structure, physicochemical characterization, antioxidant and antibacterial properties. Food Chemistry: X 18: 100714. https://doi.org/10.1016/j.fochx.2023.100714
Ma, X., Chang, P.R. and Yu, J. 2008. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydrate Polymers 72(3): 369–375. https://doi.org/10.1016/j.carbpol.2007.09.002
Madhu, G., Saha, N. and Kadu, D. 2019. Evaluation of biodegradability characteristics of cellulose-based film as per IS/ISO 14855-1. Journal of Applied Packaging Research 11(3): Art. 2. https://repository.rit.edu/japr/vol11/iss3/2
Magri, A., Rega, P., Capriolo, G. and Petriccione, M. 2023. Impact of novel active layer-by-layer edible coating on the qualitative and biochemical traits of minimally processed ‘Annurca Rossa Del Sud’ apple fruit. International Journal of Molecular Sciences 24(9): 8315.
Mahmood, M.K., Nyamupangedengu, C., Gomes, C. and Smith, A. 2022. Reducing hydrophilic characteristics of kraft paper insulation by reinforcing with surface modified rutile-TiO2 nanoparticles. IEEE Access 10: 102237–102246. https://doi.org/10.1109/ACCESS.2022.3208596.
Mamatha, G., Sowmya, P., Madhuri, D., Mohan Babu, N., Suresh Kumar, D., Vijaya Charan, G., Varaprasad, K. and Madhukar, K. 2021. Antimicrobial cellulose nanocomposite films with in situ generations of bimetallic (Ag and Cu) nanoparticles using vitex negundo leaves extract. Journal of Inorganic and Organometallic Polymers and Materials 31(2): 802–815. https://doi.org/10.1007/s10904-020-01819-9
Manivasagan, P. and Oh, J. 2016. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. International Journal of Biological Macromolecules 82: 315–327. https://doi.org/10.1016/j.ijbiomac.2015.10.081
Mao, S., Li, F., Zhou, X., Lu, C. and Zhang, T. 2023. Characterization and sustained release study of starch-based films loaded with carvacrol: a promising UV-shielding and bioactive nanocomposite film. Lebensmittel-Wissenschaft & Technologie (Food Science and Technology) 180: 114719. https://doi.org/10.1016/j.lwt.2023.114719
Marimuthu, S., Saikumar, A. and Badwaik, L.S. 2024a. Development and characterization of biodegradable foam plates from corn starch and banana bunch stalks coated with beeswax. Biomass Conversion and Biorefinery 15: 7763–7777. https://doi.org/10.1007/s13399-024-05782-0
Marimuthu, S., Saikumar, A. and Badwaik, L.S. 2024b. Food losses and wastage within food supply chain: a critical review of its generation, impact, and conversion techniques. Waste Disposal & Sustainable Energy 6(4): 661–676. https://doi.org/10.1007/s42768-024-00200-7
Martins, J.T., Cerqueira, M.A. and Vicente, A.A. 2012. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloids 27(1): 220–227. https://doi.org/10.1016/j.foodhyd.2011.06.011
Megashah, L.N., Ariffin, H., Zakaria, M.R., Hassan, M.A., Andou, Y. and Padzil, F.N.M. 2020. Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose 27(13): 7417–7429. https://doi.org/10.1007/s10570-020-03296-2
Min, S., Priyadarshi, R., Ezati, P., Rhim, J.-W. and Kim, J.T. 2023. Chitosan-based multifunctional coating combined with sulfur quantum dots to prevent listeria contamination of enoki mushrooms. Food Packaging and Shelf Life 35: 101014. https://doi.org/10.1016/j.fpsl.2022.101014
Monasterio, A., Natalia Brossard, E.N., Vega, R. and Osorio, F.A. 2023. Mechanical and surface properties of edible coatings elaborated with nanoliposomes encapsulating grape seed tannins and polysaccharides. Polymers 15(18): 3774. https://doi.org/10.3390/polym15183774
Morais Lima, M.de, Carneiro, L.C., Bianchini, D., Dias, A.R.G., Zavareze, E.da R., Prentice, C. and Moreira, A.d.S. 2017. Structural, thermal, physical, mechanical, and barrier properties of chitosan films with the addition of xanthan gum. Journal of Food Science 82 (3): 698–705. https://doi.org/10.1111/1750-3841.13653
Mortazavi, S.M., Sayed‐Tabatabaei, L., Tabatabaei, M.S. and Moghaddam, A.V. 2025. Intraoral novel drug delivery systems. In M. Hamidi & M. S. Tabatabaei (Eds.), Novel drug delivery systems: Fundamentals and applications (pp. 67–102). Wiley–Scrivener Publishing, Beverly, MA, USA. https://doi.org/10.1002/9781119852476.ch3.
Niranjana Prabhu, T. and Prashantha, K. 2018. A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polymer Composites 39(7): 2499–2522.
Nisar, T., Alim, A., Iqbal, T., Iqbal, M., Tehseen, S., Zi‐Chao, W. and Guo, Y. 2022. Functionality of different probiotic strains embedded in citrus pectin based edible films. International Journal of Food Science & Technology 57(2): 1005–1015. https://doi.org/10.1111/ijfs.15460
Noshirvani, N., Ghanbarzadeh, B., Mokarram, R.R., Hashemi, M. and Coma, V. 2017. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. International Journal of Biological Macromolecules 99: 530–538. https://doi.org/10.1016/j.ijbiomac.2017.03.007
Nouri, A., Yaraki, M.T., Ghorbanpour, M. and Wang, S. 2018. Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. International Journal of Biological Macromolecules 115: 227–235. https://doi.org/10.1016/j.ijbiomac.2018.04.051
Ortega, F., Arce, V.B. and Garcia, M.A. 2021. Nanocomposite starch-based films containing silver nanoparticles synthesized with lemon juice as reducing and stabilizing agent. Carbohydrate Polymers 252: 117208.
Othman, S.H., Kahar, N.S., Nordin, N. and Shapi’i, R.A. 2023. Properties and food packaging applications of solvent casting‐made starch‐based films incorporated with essential oils: a review. Starch (Stärke) 75(5–6): 2200152. https://doi.org/10.1002/star.202200152
Pan, J., Li, C., Liu, J., Jiao, Z., Zhang, Q., Lv, Z., Yang, W., Chen, D. and Liu, H. 2024. Polysaccharide-based packaging coatings and films with phenolic compounds in preservation of fruits and vegetables—a review. Foods 13(23): 3896. https://doi.org/10.3390/foods13233896
Panneerselvam, N., Sundaramurthy, D. and Maruthapillai, A. 2023. Pectin/xylitol incorporated with various metal oxide based nanocomposite films for its antibacterial and antioxidant activity. Journal of Polymers and Environment 31(4): 1598–1609. https://doi.org/10.1007/s10924-022-02652-6
Papagiannopoulos, A., Nikolakis, S.-P., Pamvouxoglou, A. and Koutsopoulou, E. 2023. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/laponite nanocomposite hydrogels. International Journal of Biological Macromolecules 225: 565–573. https://doi.org/10.1016/j.ijbiomac.2022.11.113
Patrocinio, D., Galván-Chacón, V., Gómez-Blanco, J.C., Miguel, S.P., Loureiro, J., Ribeiro, M.P., Coutinho, P., Pagador, J.B. and Sanchez-Margallo, F.M. 2023. Biopolymers for tissue engineering: crosslinking, printing techniques, and applications. Gels 9(11): 890. https://doi.org/10.3390/gels9110890
Priyadarshi, R., Riahi, Z. and Rhim, J.-W. 2024. Alginate-coated functional wrapping paper incorporated with sulfur quantum dots and grapefruit seed extract for preservation of potato hash browns. Sustainable Materials and Technologies 40(February): e00942. https://doi.org/10.1016/j.susmat.2024.e00942
Priyadarshi, R., Riahi, Z., Rhim, J.-W., Han, S. and Lee, S.-G. 2021. Sulfur quantum dots as fillers in gelatin/agar-based functional food packaging films. ACS Applied Nano Materials 4(12): 14292–14302.
Ramos, Ó.L., Pereira, R.N., Cerqueira, M.A., Martins, J.R., Teixeira, J.A., Xavier Malcata, F. and Vicente, A.A. 2018. Bio-based nanocomposites for food packaging and their effect in food quality and safety. In Food Packaging and Preservation (pp. 271–306). Elsevier. https://doi.org/10.1016/B978-0-12-811516-9.00008-7.
Reddy S., Prakasham, Batchu, U.R., Buddana, S.K., Sambasiva Rao, K.R.S. and Penna, S. 2021. A comprehensive review on α-D-glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydrate Research 503: 108297. https://doi.org/https://doi.org/10.1016/j.carres.2021.108297
Rhim, J.W., Wang, L.F. and Hong, S.I. 2013. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloids 33(2): 327–335.
Rodov, V., Sabag, A. and Porat, R. 2021. Performance of compostable bio-based packaging for preservation of bunch tomatoes. In: XIII International Controlled and Modified Atmosphere Research Conference – CAMA 2021. Acta Horticulturae (Vol. 1386, pp. 191–198). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2024.1386.26
Rodríguez-Varillas, S., Murru, C., Díaz-García, M.E. and Badía-Laíño, R. 2022. Green carbon dots as additives of biopolymer films for preserving from oxidation of oil-based products. Antioxidants 11(11): 2193. https://doi.org/10.3390/antiox11112193
Rostamabadi, H., Demirkesen, I, Colussi, R., Roy, S., Tabassum, N., Filho, J.G.d.O., Bist, Y., Kumar, Y., Nowacka, M. and Galus, S. 2024. Recent trends in the application of films and coatings based on starch, cellulose, chitin, chitosan, xanthan, gellan, pullulan, arabic gum, alginate, pectin, and carrageenan in food packaging. Food Frontiers 5(2): 350–391. https://doi.org/10.1002/fft2.342
Roy, S. and Rhim, J.-W. 2019. Agar-based antioxidant composite films incorporated with melanin nanoparticles. Food Hydrocolloids 94: 391–98. https://doi.org/10.1016/j.foodhyd.2019.03.038
Rukmanikrishnan, B., Ramalingam, S., Rajasekharan, S.K., Lee, J. and Lee, J. 2020. binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: biocompatibility, antioxidant activity, UV and water barrier properties. International Journal of Biological Macromolecules 153: 55–62. https://doi.org/10.1016/j.ijbiomac.2020.03.016
Saikumar, A., Singh, A., Dobhal, A., Arora, S., Junaid, P.M., Badwaik, L.S. and Kumar, S. 2024. A review on the impact of physical, chemical, and novel treatments on the quality and microbial safety of fruits and vegetables. Systems Microbiology and Biomanufacturing 4(2): 575–597. https://doi.org/10.1007/s43393-023-00217-9
Salimiraad, S., Safaeian, S., Basti, A.A., Khanjari, A. and Nadoushan, R.M. 2022. Characterization of novel probiotic nanocomposite films based on nano chitosan/nano cellulose/gelatin for the preservation of fresh chicken fillets. Lebensmittel-Wissenschaft & Technologie (Food Science and Technology) 162: 113429. https://doi.org/10.1016/j.lwt.2022.113429
Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R. and Sahari, J. 2015. Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers 7(6): 1106–1124. https://doi.org/10.3390/polym7061106
Sarfraz, M.H., Hayat, S., Siddique, M.H., Aslam, B., Ashraf, A., Saqalein, M., Khurshid, M., Sarfraz, M.F., Afzal, M. and Muzammil, S. 2024. Chitosan-based coatings and films: a perspective on antimicrobial, antioxidant, and intelligent food packaging. Progress in Organic Coatings 188(January): 108235. https://doi.org/10.1016/j.porgcoat.2024.108235.
Satriaji, K.P., Garcia, C.V., Kim, G.H., Shin, G.H. and Kim, J.T. 2020. Antibacterial bionanocomposite films based on CaSO4-crosslinked alginate and zinc oxide nanoparticles. Food Packaging and Shelf Life 24: 100510. https://doi.org/10.1016/j.fpsl.2020.100510
Saurabh, Chaturbhuj K, Gupta, S., Bahadur, J., Mazumder, S., Variyar, P.S. and Sharma, A. 2015. Mechanical and barrier properties of guar gum based nano-composite films. Carbohydrate Polymers 124:77–84. https://doi.org/10.1016/j.carbpol.2015.02.004
Silva, S.P.M., Ribeiro, S.C., Teixeira, J.A. and Silva, C.C.G. 2022. Application of an alginate-based edible coating with bacteriocin-producing lactococcus strains in fresh cheese preservation. Food Science and Technology 153: 112486. https://doi.org/10.1016/j.lwt.2021.112486
Singh, A.K., Itkor, P., Lee, M., Saenjaiban, A. and Lee, Y.S. 2024. Synergistic integration of carbon quantum dots in biopolymer matrices : an overview of current advancements in antioxidant and antimicrobial active packaging. Molecules 29(21): 5138. https://doi.org/10.3390/molecules29215138
Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B. and Medronho, B. 2019. Cellulose-based edible films for probiotic entrapment. Food Hydrocolloids 88:68–74. https://doi.org/10.1016/j.foodhyd.2018.08.057
Sogut, E., Filiz, B.E. and Seydim, A.C. 2022. Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. Journal of Dairy Science 105(6): 4829–4842. https://doi.org/10.3168/jds.2021-21245
Song, Z., Ma, T., Zhi, X. and Du, B. 2021. Cellulosic films reinforced by chitosan-citric complex for meat preservation: influence of nonenzymatic browning. Carbohydrate Polymers 272: 118476. https://doi.org/10.1016/j.carbpol.2021.118476
Song, Z., Wu, Y., Wang, H. and Han, H. 2019. Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways. Materials Science and Engineering C99: 255–263. https://doi.org/10.1016/j.msec.2018.12.053
Souza, V.G., Mello, I.P., Khalid, O., Pires, J.R., Rodrigues, C., Alves, M.M., Santos, C., Fernando, A.L. and Coelhoso, I. 2022. Strategies to improve the barrier and mechanical properties of pectin films for food packaging: comparing nanocomposites with bilayers. Coatings 12(2): 108. https://doi.org/10.3390/coatings12020108
Stoica, M., Bichescu, C.I., Crețu, C.-M., Dragomir, M., Ivan, A.S., Podaru, G.M., Stoica, D. and Stuparu-Crețu, M. 2024. Review of bio-based biodegradable polymers: smart solutions for sustainable food packaging. Foods 13(9): 3027. https://doi.org/10.3390/foods13193027
Sun, S., Weng, Y., Han, Y. and Zhang, C. 2024. Plasticization mechanism of biobased plasticizers comprising polyethylene glycol diglycidyl ether-butyl citrate with both long and short chains on poly(lactic acid). International Journal of Biological Macromolecules 276: 133948. https://doi.org/10.1016/j.ijbiomac.2024.133948
Szefer, E., Leszczyńska, A., Hebda, E. and Pielichowski, K. 2021. The application of cellulose nanocrystals modified with succinic anhydride under the microwave irradiation for preparation of polylactic acid nanocomposites. Journal of Renewable Materials 9(6): 1127–1142. https://doi.org/10.32604/jrm.2021.014584
Tang, T., Zhang, M. and Mujumdar, A.S. 2024. Film forming properties of 3D printed polysaccharide based gels and development of CO2 monitoring labels. Food Packaging and Shelf Life 46(August): 101401. https://doi.org/10.1016/j.fpsl.2024.101401
Tanpichai, S., Thongdonson, K. and Boonmahitthisud, A. 2023. Enhancement of the mechanical properties and water barrier properties of thermoplastic starch nanocomposite films by chitin nanofibers: biodegradable coating for extending banana shelf life. Journal of Materials Research and Technology 26: 5617–5625. https://doi.org/10.1016/j.jmrt.2023.08.244
Tao, L., Shi, C., Zi, Y., Zhang, H., Wang, X. and Zhong, J. 2024. A review on the chemical modification of alginates for food research: chemical nature, modification methods, product types, and application. Food Hydrocolloids 147: 109338. https://doi.org/10.1016/j.foodhyd.2023.109338
Teramoto, Y. 2015. Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20(4): 5487–5527. https://doi.org/10.3390/molecules20045487
Titone, V., Rapisarda, M., Pulvirenti, L., Napoli, E., Impallomeni, G., Botta, L., Mistretta, M.C. and Rizzarelli, P. 2025. Sustainable biocomposites based on mater-bi and grape pomace for a circular economy: performance evaluation and degradation in soil. Polymer Degradation and Stability 231: 111091. https://doi.org/10.1016/j.polymdegradstab.2024.111091
Tønnesen, H.H. and Karlsen, J. 2002. Alginate in drug delivery systems. Drug Development and Industrial Pharmacy 28(6): 621–630. https://doi.org/10.1081/DDC-120003853
Uchida, K., Masuda, T., Hara, S., Matsuo, Y., Liu, Y., Aoki, H., Asano, Y., Miyata, K., Fukuma, T., Ono, T. and Isoyama, T., 2024. Stability enhancement by hydrophobic anchoring and a cross-linked structure of a phospholipid copolymer film for medical devices. ACS Applied Materials & Interfaces 16(30): 39104–39116. https://doi.org/10.1021/acsami.4c07752
Udayakumar, G.P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A. and Show, P.L. 2021. Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering 9(4): 105322. https://doi.org/10.1016/j.jece.2021.105322
Vedove, T.M.A.R.D., Maniglia, B.C. and Tadini, C.C. 2021. Production of sustainable smart packaging based on cassava starch and anthocyanin by an extrusion process. Journal of Food Engineering 289: 110274. https://doi.org/10.1016/j.jfoodeng.2020.110274
Vijayanand, S., Ravi, A., Soundararajan, A., Sudha, P.N. and Hemapriya, J. 2020. Pullulan. In: Ahmed, S. and Soundararajan, A. (eds.) Pullulan: Processing, properties, and applications (pp. 1–34).. Jenny Stanford Publishing. https://doi.org/10.1201/9781003056942
Wang, Y., Su, J., Li, T., Ma, P., Bai, H., Xie, Y., Chen, M. and Dong, W. 2017. A novel UV-shielding and transparent polymer film: when bioinspired dopamine–melanin hollow nanoparticles join polymers. ACS Applied Materials & Interfaces 9(41): 36281–3689. https://doi.org/10.1021/acsami.7b08763
Wilpiszewska, K., Antosik, A.K., Schmidt, B., Janik, J. and Rokicka, J. 2020. Hydrophilic films based on carboxymethylated derivatives of starch and cellulose. Polymers 12(11): 2447. https://doi.org/10.3390/polym12112447
Wongphan, P. and Harnkarnsujarit, N. 2020. Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. International Journal of Biological Macromolecules 156(August): 80–93. https://doi.org/10.1016/j.ijbiomac.2020.04.056
Xiong, J., Li, Q., Shi, Z. and Ye, J. 2017. Interactions between wheat starch and cellulose derivatives in short-term retrogradation: rheology and FTIR study. Food Research International 100: 858–863. https://doi.org/10.1016/j.foodres.2017.07.061
Xu, T., Gao, C.C., Feng, X., Yang, Y., Shen, X. and Tang, X. 2019. Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. International Journal of Biological Macromolecules 134: 230–236. https://doi.org/10.1016/j.ijbiomac.2019.04.189
Xu, Y. Wu, Z., Li, A., Chen, N., Rao, J. and Zeng, Q. 2024. Nanocellulose composite films in food packaging materials: a review. Polymers 16(3): 423. https://doi.org/10.3390/polym16030423
Yang, Z., Li, C., Wang, T., Li, Z., Zou, X., Huang, X., Zhai, X., Shi, J., Shen, T., Gong, Y. and Holmes. M.,. 2023. Novel gellan gum-based probiotic film with enhanced biological activity and probiotic viability: application for fresh-cut apples and potatoes. International Journal of Biological Macromolecules 239: 124128. https://doi.org/10.1016/j.ijbiomac.2023.124128
Zhai, X., Zhou, S., Zhang, R., Wang, W. and Hou, H. 2022. Antimicrobial starch/poly(butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging. International Journal of Biological Macromolecules 206: 298–305. https://doi.org/10.1016/j.ijbiomac.2022.02.158
Zhang, K., Chen, Q., Xiao, J., You, L., Zhu, S., Li, C. and Fu, X. 2023. Physicochemical and functional properties of chitosan-based edible film incorporated with Sargassum pallidum polysaccharide nanoparticles. Food Hydrocolloids 138: 108476. https://doi.org/10.1016/j.foodhyd.2023.108476
Zhao, Y., Li, B., Zhang, W., Zhang, L., Zhao, H., Wang, S. and Huang, C. 2023. Recent advances in sustainable antimicrobial food packaging: insights into release mechanisms, design strategies, and applications in the food industry. Journal of Agricultural and Food Chemistry 71(31): 11806–11833. https://doi.org/10.1021/acs.jafc.3c02608
Zhu, H., Cheng, J.H. and Han, Z. 2024. Construction of a sustainable and hydrophobic high-performance all-green pineapple peel cellulose nanocomposite film for food packaging. International Journal of Biological Macromolecules 256(January): 128396. https://doi.org/10.1016/j.ijbiomac.2023.128396