In vitro elucidation of the therapeutic applications of biosynthesized selenium nanoparticles using Saussurea costus root extract
Main Article Content
Keywords
Saussurea costus; selenium nanoparticles; H. pylori; antidiabetic; anticancer; cell cycle
Abstract
Saussurea costus contains a variety of bioactive chemicals vital for biomedical use. The unique benefits of selenium
nanoparticles (SeNPs) make them very desirable in various sectors. The emergence of green techniques employing ecological assets is a result of growing need for sustainable and environment-friendly nanomaterial synthesis.
The aim of this investigation is to create green SeNPs by using root extract of S. costus and evaluate the therapeutic benefits of the generated SeNPs with those of S. costus extract. S. costus was processed with 90% ethanol, and analyzed by high-performance liquid chromatography. The biosynthesized nanomaterials were examined. In all, 15 compounds were detected in the extract, where rutin, chlorogenic acid, and coumaric acid were the most common molecules determined. The produced SeNPs had a characteristic peak at 275 nm, with a mean size of 73.7±0.7 nm. There is a characteristic pattern for SeNPs that could be observed through Fourier-transform infrared spectroscopy and X-ray diffraction analysis. SeNPs were found to have better anti-Helicobacter pylori impact than S. costus extract. The produced nanocrystals had an inhibition diameter of 30.7±0.2 mm and a minimum inhibitory concentration of 15.62±0.2 µg/mL. Also, 2,2-diphenyl-1-picrylhydrazyl (DPPH) testing showed that SeNPs had a half-maximal inhibitory concentration (IC50) = 9.42±0.1 µg/mL. Furthermore, the prepared nanopar-
ticles had a promising anti-inflammatory impact with IC50 = 8.33±0.4 µg/mL. The biosynthesized nanoparticles
had a better alpha glucosidase level and alpha amylase level than S. costus extract. SeNPs showed promising anti-
cancer activity against human epithelial cell line Caco-2 (a cell line originally derived from colon carcinoma). This
was confirmed by analyzing cell cycle changes using flow cytometry. Collectively, SeNPs prepared from S. costus
had in vitro multi-therapeutic functions to be used in the future pharmaceutical applications.
References
Adibian, F., Ghaderi, R.S., Sabouri, Z., Davoodi, J., Kazemi, M., Ghazvini, K., Youssefi, M., Soleimanpour, S. and Darroudi, M. 2022. Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity. Biometals 35(1): 147–158. https://doi.org/10.1007/s10534-021-00356-3
Ahmed, H.H., Abd El-Maksoud, M.D., Abdel Moneim, A.E. and Aglan, H.A. 2017. Pre-clinical study for the antidiabetic potential of selenium nanoparticles. Biological Trace Element Research 177(2): 267–280. https://doi.org/10.1007/s12011-016-0876-z
Ahmed, H.Y., Kareem, S.M., Atef, A., Safwat, N.A., Shehata, R.M., Yosri, M., Youssef, M., Baakdah, M.M., Sami, R., Baty, R.S., Alsubhi, N.H., Alrefaei, G.I., Shati, A.A. and Elsaid, F.G. 2022. Optimization of supercritical carbon dioxide extraction of Saussurea costus oil and its antimicrobial, antioxidant, and anticancer activities. Antioxidants (Basel) 11(10): 1960. https://doi.org/10.3390/antiox11101960
AlBasher, G., Alfarraj, S., Alarifi, S., Alkhtani, S., Almeer, R., Alsultan, N., Alharthi, M., Alotibi, N., Al-bass, A. and Abdel Moneim, A.E. 2020. Nephroprotective role of selenium nanoparticles against glycerol-induced acute kidney injury in rats. Biological Trace Element Research 194: 444–454.
Al-Brakati, A., Alsharif, K.F., Alzahrani, K.J., Kabrah, S., Al-Amer, O., Oyouni, A.A., Habotta, O.A., Lokman, M.S., Bauomy, A.A., Kassab, R.B., et al. 2021. Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. International Journal of Nanomedicine 16: 4335–4349.
Alduais, M.A., El Rabey, H.A., Mohammed, G.M., Al-Awthan, Y.S., Althiyabi, A.S., Attia, E.S., Rezk, S.M. and Tayel, A.A. 2025. The anticancer activity of fucoidan coated selenium nanoparticles and curcumin nanoparticles against colorectal cancer lines. Scientific Reports 15(1): 287. https://doi.org/10.1038/s41598-024-82687-y
Almayouf, M.A., Charguia, R., Awad, M.A., Ben Bacha, A. and Ben Abdelmalek, I. 2024. Nanotherapy for cancer and biological activities of green synthesized AgNPs using aqueous Saussurea costus leaves and roots extracts. Pharmaceuticals (Basel). 17(10): 1371. https://doi.org/10.3390/ph17101371
Alsanosi, S., Sheikh, R.A., Sonbul, S., Altayb, H.N., Batubara, A.S., Hosawi, S., Al-Sakkaf, K., Abdullah, O., Omran, Z. and Alhosin, M. 2022. The potential role of Nigella sativa seed oil as epigenetic therapy of cancer. Molecules 27: 2779. https://doi.org/10.3390/molecules27092779
Alshahrani, S.H., Alameri, A.A., Zabibah, R.S., Jalil, A.T.J., Ahmadi, O. and Behbudi, G. 2022. Screening method synthesis of AgNPs using Petroselinum crispum (parsley) leaf: spectral analysis of the particles and antibacterial study. Journal of the Mexican Chemical Society 66(4),480-487: https://doi.org/10.29356/jmcs. v66i4.1803.
Amina, M., Arumugham, M.I., Ramalingam, K. and Rajeshkumar, S. 2023. Evaluation of the anti-inflammatory, antimicrobial, antioxidant, and cytotoxic effects of chitosan thiocolchicoside-lauric acid nanogel. Cureus. 15(9): e46003. https://doi.org/10.7759/cureus.46003
Ao, B., Du, Q., Liu, D., Shi, X., Tu, J. and Xia, X. 2023. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Frontiers in Microbiology 14: 1229838. https://doi.org/10.3389/fmicb.2023.1229838
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N. and Omar, A.K.M. 2013. Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering (JFE) 117: 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014
Bardaweel, S.K., Gul, M., Alzweiri, M., Ishaqat, A., ALSalamat, H.A. and Bashatwah, R.M. 2018. Reactive oxygen species: the dual role in physiological and pathological conditions of the human body. Eurasian Journal of Medicine 50: 93–201.
Barzegarparay, F., Najafzadehvarzi, H., Pourbagher, R., Parsian, H., Ghoreishi S.M. and Mortazavi-Derazkola, S. 2024. Green synthesis of novel selenium nanoparticles using Crataegus monogyna extract (SeNPs@CM) and investigation of its toxicity, antioxidant capacity, and anticancer activity against MCF-7 as a breast cancer cell line. Biomass Conversion & Biorefinery 14: 25369–25378. https://doi.org/10.1007/s13399-023-04604-z
Bhattacharya, D. and Rajinder, G. 2005. Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology 25: 199–204. https://doi.org/10.1080/07388550500361994
Binsuwaidan, R., El-Masry, T.A., El-Nagar, M.M.F., El Zahaby E.I., Gaballa, M.M.S. and El-Bouseary, M.M. 2024. Investigating the antibacterial, antioxidant, and anti-inflammatory properties of a lycopene selenium nano-formulation: an in vitro and in vivo study. Pharmaceuticals (Basel) 17(12): 1600. https://doi.org/10.3390/ph17121600
Cháirez-Ramírez, M.H., de la Cruz-López, K.G. and García-Carrancá, A. 2021. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Frontiers in Pharmacology 12: 710304. https://doi.org/10.3389/fphar.2021.710304
DeSantis, C.E., Lin, C.C., Mariotto, A.B., Siegel, R.L., Stein, K.D. and Kramer, J.L. 2014. Cancer treatment and survivor ship statistics. CA Cancer Journal for Clinicians 64: 252–271. https://doi.org/10.3322/caac.21235
Di Meo, S., Reed, T.T., Venditti, P. and Victor, V.M. 2016. Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity 2016: 1245049.
Elnour, A.A.M. and Abdurahman, N.H. 2024. Current and potential future biological uses of Saussurea costus (Falc.) Lipsch: a comprehensive review. Heliyon 10(18): e37790. https://doi.org/10.1016/j.heliyon. 2024.e37790
Elshaer, S.E., Hamad, G.M., Hafez, E.E., Baghdadi, H.H., El-Demerdash, F.M. and Simal-Gandara, J. 2022. Root extracts of Saussurea costus as prospective detoxifying food additive against sodium nitrite toxicity in male rats. Food and Chemical Toxicology 166: 113225. https://doi.org/10.1016/j.fct.2022.113225
Elshaer, S.E., Hamad, G.M., Sobhy, S.E., Darwish, A.M.G., Baghdadi, H.H., H Abo Nahas, H., El-Demerdash, F.M., Kabeil, S.S.A., Altamimi, A.S., Al-Olayan, E., Alsunbul, M., Docmac, O.K., Jaremko, M., Hafez, E.E. and Saied, E.M. 2024. Supplementation of Saussurea costus root alleviates sodium nitrite-induced hepatorenal toxicity by modulating metabolic profile, inflammation, and apoptosis. Frontiers in Pharmacology 15: 1378249. https://doi.org/10.3389/fphar.2024.1378249
Errasti-Murugarren, E., Bartoccioni, P. and Palacín, M. 2021. Membrane protein stabilization strategies for structural and functional studies. Membranes (Basel) 11(2): 1–17. PMC7926488.
Esmaili, S., Zinsaz, P., Ahmadi, O, Najian, Y., Vaghari, H. and Jafarizadeh-Malmiri, H. 2022. Screening of four accelerated synthesized techniques in green fabrication of ZnO nanoparticles using Willow leaf extract. Zeitschrift für Physikalische Chemie, 236 (11-12), 1567-1581), https://doi.org/10.1515/zpch-2022-0036.
Filipović, N., Ušjak, D., Milenković, M.T., Zheng, K., Liverani, L., Boccaccini, A.R. and Stevanović, M.M. 2021. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Frontiers in Bioengineering and Biotechnology 8: 624621.
Garza-García, J.J.O., Hernández-Díaz, J.A., León-Morales, J.M. et al. 2023. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties. Journal of Nanobiotechnology 21: 252. https://doi.org/10.1186/s12951-023-02027-6
Ghoreishi, S.M. and Mortazavi-Derazkola, S. 2025. Eco-friendly synthesis of gold nanoparticles via tangerine peel extract: unveiling their multifaceted biological and catalytic potentials. Heliyon 11(1): e40104.
Gueffai, A., Gonzalez-Serrano, D.J., Christodoulou, M.C., Orellana-Palacios, J.C., Ortega, M.L.S., Ouldmoumna, A., Kiari, F.Z., Ioannou, G.D., Kapnissi-Christodoulou, C.P., Moreno, A. and Hadidi, M. 2022. Phenolics from defatted black cumin seeds (Nigella sativa L.): ultrasound-assisted extraction optimization, comparison, and antioxidant activity. Biomolecules 12(9): 1311. https://doi.org/10.3390/biom12091311
Gupta, A., Behl, T., Singh, S., Garg, M., Tamboli, E.T., Chigurupati, S., Felemban, S.G., Albarrati, A., Albratty, M. and Meraya, A.M. 2023. Quantification of luteolin, apigenin and chrysoeriol in Tecoma stans by RP-HPLC method. Journal of Chromatographic Science 61(9): 844–851. https://doi.org/10.1093/chromsci/bmad022
Hashemi, Z., Zirar M. Mizwari, Z.M., Alizadeh, S.R., Habibi, M., Rezaee, S.M., Ghoreishi, S.M., Mortazavi-Derazkola, S. and Ebrahimzadeh, M.A. 2023. Anticancer and antibacterial activity against clinical pathogenic multi-drug-resistant bacteria using biosynthesized silver nanoparticles with Mentha pulegium and Crocus caspius extracts. Inorganic Chemistry Communications 154: 110982. https://doi.org/10.1016/j.inoche.2023.110982
Huang, X., Liu, Y., Lin, Z., Wu, B., Nong, G., Chen, Y., Lu, Y., Ji, X., Zhou, X., Suo, B., Chen,Q. and Wei, J. 2021. Minimum inhibitory concentrations of commonly used antibiotics against Helicobacter pylori: a multicenter study in South China. PLoS One 16(9): e0256225. https://doi.org/10.1371/journal.pone.0256225
Karas, R.A., Alexeree, S., Elzohery, N. et al. 2024. Antidiabetic potential of selenium nanoparticles and plasma-rich platelets in diabetic mice. Applied Biological Chemistry 67: 62. https://doi.org/10.1186/s13765-024-00907-5
Karim, N., Liu, S., Rashwan, A.K., Xie J., Mo, J., Osman, A.I., Rooney, D.W. and Chen, W. 2023. Green synthesis of nanolipo-fbersomes using Nutriose® FB 06 for delphinidin-3-O-sambubioside delivery: characterization, physicochemical properties, and application. International Journal of Biological Macromolecules 247: 125839. https://doi.org/10.1016/j.ijbiomac.2023.125839
Kibria, M.R., Akbar, R.I., Nidadavolu, P., Havryliuk, O., Lafond, S. and Azimi, S. 2023. Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: a machine learning-based solution. Scientific Reports 13(1): 547. https://doi.org/10.1038/s41598-023-27729-7
Korde, P., Ghotekar, S., Pagar, T., Pansambal, S., Oza, R. and Mane, D. 2020. Plant extract-assisted eco-benevolent synthesis of selenium nanoparticles—a review on plant parts involved, characterization and their recent applications. Journal of Chemical Reviews 2(3): 157–168.
Kukić, J., Popović, V., Petrović, S., Mucaji, P., Ćiric, A. and Stojković, D. 2008. Antioxidant and antimicrobial activity of Cynara cardunculus extracts. Food Chemistry 107: 861–868. https://doi.org/10.1016/j.foodchem.2007.09.005
Mammate N., El Oumari F.E., Imtara H., Belchkar S., Lahrichi A., Alqahtani A.S., Noman O.M., Tarayrah M. and Houssaini T.S. 2022. Antioxidant and anti-urolithiatic activity of aqueous and ethanolic extracts from Saussurea costus (Falc) lispich using scanning electron microscopy. Life (Basel) 12(7): 1026. https://doi.org/10.3390/life12071026
Marinova, D.F., Ribarova, F. and Atanassova, M. 2005. Total phenolic and total flavonoids in Ulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy 40(3): 255–260.
Mellinas, C., Jiménez, A. and Garrigós, M.D.C. 2019. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules 24(22): 40–48. https://doi.org/10.3390/molecules24224048
Mikhailova E.O. Selenium nanoparticles: green synthesis and biomedical application. Molecules 28(24): 8125. https://doi.org/10.3390/molecules28248125
Mohammadi-Aghdam, S., Bahraini, F. and Ghoreishi, S.M. 2024. In vitro anticancer on acute lymphoblastic leukemia NALM-6 cell line, antibacterial and catalytic performance of eco-friendly synthesized ZnO and Ag-doped ZnO nanoparticles using Hedera colchica extract. Biomass Conversion and Biorefinery 14: 20037–20052. https://doi.org/10.1007/s13399-023-04562-6
Mohanpuria, P., Rana, N.K. and Yadav S.K. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research 10: 507–517. https://doi.org/10.1007/s11051-007-9275-x
Mujammami, M. 2020. Clinical significance of Saussurea costus in thyroid treatment. Saudi Medicine Journal 41(10): 1047–1053. https://doi.org/10.15537/smj.2020.10.25416
Oboh, G., Akinyemi, A.J. and Ademiluyi, A.O. 2012. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Telfairia occidentalis (fluted pumpkin) leaf. Asian Pacific Journal of Tropical Biomedicine 2(9): 733–738. https://doi.org/10.1016/S2221-1691(12)60219-6
Othman, M.S., Obeidat, S.T., Al-Bagawi, A.H., Fareid, M.A., Fehaid, A. and Abdel Moneim, A.E. 2022. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. Journal of Integrated Medicine 20(1): 65–72. https://doi.org/10.1016/j.joim.2021.11.002
Pon Matheswari, P., Jenit Sharmila, G. and Murugan, C. 2022. Green synthesis of selenium nanoparticles using Delonix regia and Nerium oleander flower extract and evaluation of their antioxidant and antibacterial activities. Inorg and Nano-Met Chemistry 54 (5), 1–12. https://doi.org/10.1080/24701556.2021.2025099
Pop, R., Tăbăran, A.F., Ungur, A.P., Negoescu, A. and Cătoi, C. 2022. Helicobacter pylori-induced gastric infections: from pathogenesis to novel therapeutic approaches using silver nanoparticles. Pharmaceutics 14(7): 1463. https://doi.org/10.3390/pharmaceutics14071463
Puri, A., Mohite, P., Patil, S., Chidrawar, V.R., Ushir, Y.V., Dodiya, R. and Singh, S. 2023. Facile green synthesis and characterization of Terminalia arjuna bark phenolic-selenium nanogel: a biocompatible and green nano-biomaterial for multifaceted biological applications. Frontiers in Chemistry 11: 1273360.
Rezaei, A., Morsali, A., Bozorgmehr, M.R. and Nasrabadi, M. 2021. Quantum chemical analysis of 5-aminolevulinic acid anticancer drug delivery systems: carbon nanotube, –COOH functionalized carbon nanotube and iron oxide nanoparticle. Journal of Molecular Liquids 340: 117182. https://doi.org/10.1016/j.molliq.2021.117182
Santiago, M.B., Leandro, L.F., Rosa, R.B., Silva, M.V., Teixeira, S.C., Servato, J.P.S., Ambrósio, S.R., Veneziani, R.C.S., Aldana-Mejía, J.A., Bastos, J.K. and Martins, C.H.G. 2022. Brazilian red propolis presents promising anti-H. pylori activity in in vitro and in vivo assays with the ability to modulate the immune response. Molecules 27(21): 7310. https://doi.org/10.3390/molecules27217310
Sastry, M., Ahmad, A., Khan, M.I. and Kumar, R. 2004. Microbial nanoparticle production. In: Niemeyer C.M. and Mirkin C.A. (eds.) Nanobiotechnology. Wiley-VCH, Weinheim, Germany, pp. 126–135.
Sentkowska, A. and Pyrzyńska, K. 2023. Antioxidant properties of selenium nanoparticles synthesized using tea and herb water extracts. Applied Sciences 13: 1071. https://doi.org/10.3390/app13021071
Shayan, S., Hajihajikolai, D., Ghazale, F., Gharahdaghigharahtappeh, F., Faghih, A., Ahmadi, O. and Behbudi, G. 2024. Optimization of green synthesis formulation of selenium nanoparticles (SeNPs) using peach tree leaf extract and investigating its properties and stability. Iranian Journal of Biotechnology 22(3): e3786. https://doi.org/10.30498/ijb.2024.413943.3786
Shirzadi-Ahodashti, M., Mizwari, Z.M., Hashemi, Z., Rajabalipour, Masoumeh, S.S., Ghoreishi, M., Mortazavi-Derazkola, S. and Ali Ebrahimzadeh, M.A. 2021. Discovery of high antibacterial and catalytic activities of biosynthesized silver nanoparticles using C. fruticosus (CF-AgNPs) against multi-drug resistant clinical strains and hazardous pollutants. Environmental Technology & Innovation 23: 101607. https://doi.org/10.1016/j.eti.2021.101607
Singh, G., Passsari, A.K., Leo, V.V., Mishra, V.K., Subbarayan, S., Singh, B.P., Kumar, B., Kumar, S., Gupta, V.K., Lalhlenmawia, H. and Nachimuthu, S.K. 2016. Evaluation of phenolic content variability along with antioxidant, antimicrobial, and cytotoxic potential of selected traditional medicinal plants from India. Frontiers in Plant Science 7: 407. https://doi.org/10.3389/fpls.2016.00407
Soliman, M.K., Amin, M.A.A., Nowwar, A.I. et al. 2024. Green synthesis of selenium nanoparticles from Cassia javanica flowers extract and their medical and agricultural applications. Scientific Reports 14: 26775. https://doi.org/10.1038/s41598-024-77353-2
Taher, M.A.H., Dawood, D.H., Sanad, M.I. and Hassan, R.A. 2026. Searching for anti-hyperglycemic phytomolecules of Tecoma stans. European Journal of Chemistry 7(4): 397–404. https://doi.org/10.5155/eurjchem.7.4.397-404.1478
Tsiaka, T., Sinanoglou, V.J. and Zoumpoulakis, P. 2017. Extracting bioactive compounds from natural sources using green high-energy approaches: trends and opportunities in lab- and large-scale applications. In:A.M.Grumezescu and A.M.Holban (Eds.), Ingredients Extraction by Physicochemical Methods in Food (PP.307-365). Academic Press, Cambridge, MA.
Xu, Y., Rashwan, A.K., Osman, A.I., Abd El-Monaem, E.M., Elgarahy, A.M., Eltaweil, A.S., Omar, M., Li, Y., Mehanni, A.-H.E., Chen, W., et al. 2023. Synthesis and potential applications of cyclodextrin based metal-organic frameworks: a review. Environmental Chemistry Letters 21: 447–477. https://doi.org/10.1007/s10311-022-01509-7
Yin, X., Lai, Y., Du, Y., Zhang, T., Gao, J. and Li, Z. 2023. Metal-based nanoparticles: a prospective strategy for Helicobacter pylori treatment. International Journal of Nanomedicine 18: 2413–2429. https://doi.org/10.2147/IJN.S405
Zhai, Y., Peng, W., Luo, W., Wu, J., Liu, Y and Wang F. 2024. Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi. Food Chemistry 431: 137114.
