Zero-waste valorization of figs in fresh pasta A sustainable approach to enhance product functionality and quality
Main Article Content
Keywords
figs, by-products, sustainability, zero-waste, fresh pasta, fortified pasta
Abstract
The zero-waste concept was applied to figs to fortify fresh pasta, using pulp and peels as new ingredients. Two percentages of figs were used, identified as Low (17.55%) and High (20.43%). Technological quality, sensory properties, and fibers were assessed on both control and fortified samples. An in vitro digestion was carried out to quantify the amount of released glucose. Results demonstrated that the addition of figs reduced the technological properties of pasta by increasing cooking loss, water absorption, and swelling index. Consequently, a worsening was also observed in sensory acceptability, above all after cooking. However, the new products remained fully acceptable at both concentrations (overall quality = 9.0 for the control, 7.38 for Low, and 6.5 for High). No differences appeared in terms of released glucose with respect to the control (around 2.7 mg/mL glucose released). Interestingly, a significant fortification in insoluble fibers was promoted from 15 in the control to much more than 20 mg/g in fortified pasta. The study demonstrates the complete waste-free production sequence to create healthier pasta. By conferring multifunctional added value, the zero-waste concept actively aligns with circular economy principles and fosters a resilient food future as a promising direction for industrial applications.
References
Aravind, N., Sissons, M., Egan, N., & Fellows, C. (2012). Effect of insoluble dietary fibre addition on technological, sensory, and structural properties of durum wheat spaghetti. Food Chemistry, 130(2), 299–309. https://doi.org/10.1016/j.foodchem.2011.07.042
Argyri, K., Athanasatou, A., Bouga, M., & Kapsokefalou, M. (2016). The potential of an in vitro digestion method for predicting glycemic response of foods and meals. Nutrients, 8(4), 209. https://doi.org/10.3390/nu8040209
Bianchi, F., Tolve, R., Rainero, G., Bordiga, M., Brennan, C. S., & Simonato, B. (2021). Technological, nutritional and sensory properties of pasta fortified with agro-industrial by-products: A review. International Journal of Food Science and Technology, 56(9), 4356–4366. https://doi.org/10.1111/ijfs.15045
Bianchi, F., Santoro, V., Pasqualoni, I., Bruttomesso, M., Rizzi, C., Piccinelli, A. L., & Simonato, B. (2024). Fortification of durum wheat fresh pasta with red chicory by-product powder: Effects on technological, nutritional, and sensory properties. LWT - Food Science and Technology, 203, 116358. https://doi.org/10.1016/j.lwt.2022.116358
Carpentieri, S., Larrea-Wachtenforff, D., Donsì, F., & Ferrari, G. (2022). Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends in Food Science & Technology, 122, 49–65. https://doi.org/10.1016/j.tifs.2022.01.020
Cedola, A., Cardinali, A., D’Antuono, I., Conte, A., & Del Nobile, M. A. (2020). Cereal foods fortified with by-products from the olive oil industry. Food Bioscience, 33, 100490. https://doi.org/10.1016/j.fbio.2019.100490
Cleary, L., & Brennan, C. S. (2006). The influence of a (1→3)(1→4)-β-D-glucan rich fraction from barley on the physico-chemical properties and in vitro reducing sugars release of durum wheat pasta. International Journal of Food Science and Technology, 41(8), 910–918. https://doi.org/10.1111/j.1365-2621.2005.01138.x
Crizel, T. M., Rios, A. O., Thys, R. C. S., & Flores, S. H. (2015). Effects of orange by-product fiber incorporation on the functional and technological properties of pasta. Food Science and Technology, 35(3), 546–551.
Darko, H. S. O., Ismaiel, L., Fanesi, B., Pacetti, D., & Lucci, P. (2024). Current trends in food processing by-products as sources of high value-added compounds in food fortification. Foods, 13(17), 2658. https://doi.org/10.3390/foods13172658
Faria, D. J., Carvalho, A. P. A. D., & Conte-Junior, C. A. (2023). Valorization of fermented food wastes and byproducts: Bioactive and valuable compounds, bioproduct synthesis, and applications. Fermentation, 9(10), 920. https://doi.org/10.3390/fermentation9100920
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077
Englyst, H. N., & Hudson, G. J. (1987). Colorimetric method for routine analysis of dietary fibre as non-starch polysaccharides: A comparison with gas-liquid chromatography. Food Chemistry, 24(1), 63–76. https://doi.org/10.1016/0308-8146(87)90122-2
Espinosa-Solis, V., Zamudio-Flores, P. B., Tirado-Gallegos, J. M., Ramírez-Mancinas, S., Olivas-Orozco, G. I., Espino-Díaz, M., Hernández-González, M., García-Cano, V. G., Sánchez-Ortíz, O., Buenrostro-Figueroa, J. J., & Baeza-Jiménez, R. (2019). Evaluation of cooking quality, nutritional and texture characteristics of pasta added with oat bran and apple flour. Foods, 8(8), 299. https://doi.org/10.3390/foods8080299
Foschia, M., Peressini, D., Sensidoni, A., Brennan, M., & Brennan, C. S. (2015). How combinations of dietary fibres can affect physicochemical characteristics of pasta. LWT - Food Science and Technology, 63(1), 41–46. https://doi.org/10.1016/j.lwt.2015.03.002.
Ganesh, K., Sridhar, A., & Vishali, S. (2022). Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities—a review. Chemosphere, 287(Part 3), 132221. https://doi.org/10.1016/j.chemosphere.2021.132221
García Lomillo, J., González SanJosé, M. L., Del Pino García, R., Rivero Pérez, M. D., & Muñiz Rodríguez, P. (2014). Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. Journal of Agricultural and Food Chemistry, 62(52), 12595–12602. https://doi.org/10.1021/jf5042678
Gómez, M., Braojos, M., Fernández, R., & Parle, F. (2025). Utilization of by products from the fruit and vegetable processing industry in pasta production. Applied Sciences, 15(4), 2189. https://doi.org/10.3390/app15042189
Gowe, C. (2015). Review on potential use of fruit and vegetables by products as a valuable source of natural food additives. Food Science & Quality Management, 45, 47–61. https://www.iiste.org/Journals/index.php/FSQM/article/view/27004
Jhans, B., Sharma, R., Sharma, D., Sharma, S., & Bobade, H. (2025). Quality characteristics of pasta. In S. Sharma, R. Sharma, A. Gupta, & H. Bobade (Eds.), Advances in Pasta Technology (pp. 91–117). Springer Cham. https://doi.org/10.1007/978-3-031-84497-3_5
Le Rose, A., Panza, O., Caro, D., Conte, A., & Del Nobile, M. A. (2025). Cheesecake Customized Using Juice and By Products from Prickly Pears: A Case Study of Recycling and Environmental Impact Evaluation. Foods, 14(7), 1159. https://doi.org/10.3390/foods14071159
Li, M., & Ma, S. (2024). A review of healthy role of dietary fiber in modulating chronic diseases. Food Research International, 119, 114682. https://doi.org/10.1016/j.foodres.2024.114682
Lu, X., Brennan, M. A., Serventi, L., Mason, S., & Brennan, C. S. (2016). How the inclusion of mushroom powder can affect the physicochemical characteristics of pasta. International Journal of Food Science and Technology, 51(11), 2433–2439. https://doi.org/10.1111/ijfs.13246
Lucera, A., Costa, C., Marinelli, V., Saccotelli, M. A., Del Nobile, M. A., & Conte, A. (2018). Fruit and vegetable by products to fortify spreadable cheese. Antioxidants, 7(5), 61. https://doi.org/10.3390/antiox7050061
Marinelli, V., Lucera, A., Incoronato, A., Morcavallo, L., Del Nobile, M. A., & Conte, A. (2021). Strategies for fortified sustainable food: The case of watermelon based candy. Journal of Food Science and Technology, 58(3), 894–901. https://doi.org/10.1007/s13197 020 04603 2
Mohan, S. V., Amulya, K., & Modestra, J. A. (2020). Urban biocycles – Closing metabolic loops for resilient and regenerative ecosystem: A perspective. Bioresource Technology, 306, 123098. https://doi.org/10.1016/j.biortech.2020.123098
Nilusha, R. A. T., Jayasinghe, J. M. J. K., Perera, O. D. A. N., & Perera, P. I. P. (2019). Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics: A brief overview. International Journal of Food Science, 2019, Article 6750726. https://doi.org/10.1155/2019/6750726
Padalino, L., Conte, A., Lecce, L., Likyova, D., Sicari, V., Pellicanò, T. M., Poiana, M., & Del Nobile, M. A. (2017). Functional pasta with tomato by product as a source of antioxidant compounds and dietary fibre. Czech Journal of Food Sciences, 35(1), 48–56. https://doi.org/10.17221/171/2016 CJFS
Pan, W. C., Liu, Y. M., & Shiau, S. Y. (2018). Effect of okara and vital gluten on physico chemical properties of noodle. Czech Journal of Food Sciences, 36(4), 301–306. https://doi.org/10.17221/214/2017-CJFS
Panza, O., Conte, A., & Del Nobile, M. A. (2022a). Zero waste approach applied to pomegranates for prolonging fish burger shelf life. Foods, 11(4), 551. https://doi.org/10.3390/foods11040551
Panza, O., Conte, A., & Del Nobile, M. A. (2022b). Recycling of fig peels to enhance the quality of handmade pasta. LWT – Food Science and Technology, 168, 113872. https://doi.org/10.1016/j.lwt.2022.113872
Pereira, J. A. M., Berenguer, C. V., Andrade, C. F. P., & Câmara, J. S. (2022). Unveiling the bioactive potential of fresh fruit and vegetable waste in human health from a consumer perspective. Applied Sciences, 12(5), 2747. https://doi.org/10.3390/app12052747
Rakhesh, N., Fellows, C. M., & Sissons, M. (2015). Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres. Journal of the Science of Food and Agriculture, 95(1), 2–11. https://doi.org/10.1002/jsfa.6645
Romano, R., De Luca, L., Manzo, N., Pizzolongo, F., & Aiello, A. (2020). A new type of tomato puree with high content of bioactive compounds from 100% whole fruit. Journal of Food Science, 85(10), 3264–3272. https://doi.org/10.1111/1750-3841.15423
Sandhu, A. K., Islam, M., Edirisinghe, I., & Burton Freeman, B. (2023). Phytochemical composition and health benefits of figs (fresh and dried): A review of literature from 2000 to 2022. Nutrients, 15(11), 2623. https://doi.org/10.3390/nu15112623
Sanjuán Ferrer, D., García Segovia, P., Andrés Bello, A., & Martínez Monzó, J. (2023). Valorization of fruit and vegetable by products for the development of meat analogues: A review. Trends in Food Science & Technology, 132, 237–250. https://doi.org/10.1016/j.tifs.2023.01.011
Sant'Anna, V., Christiano, F., Damasceno Ferreira Marczak, L., Tessaro, I.C., & Thys, R.C.S. (2014). The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT - Food Science and Technology, 58(2), 497–501. https://doi.org/10.1016/j.lwt.2014.04.025
Sarker, A., Ahmmed, R., Ahsan, S. M. A., Rana, J., Ghosh, M. K., & Nandi, R. (2024). A comprehensive review of food waste valorization for the sustainable management of global food waste. Sustainable Food Technology, 2, 48–69. https://doi.org/10.1039/D3FB00156C
Sarker, M., & Rahman, M. (2017). Dietary fiber and obesity management: A review. Advances in Obesity, Weight Management & Control, 7(3), 295–297. https://doi.org/10.15406/aowmc.2017.07.00216
Shinali, T. S., Zhang, Y., Altaf, M., Nsabiyeze, A., Han, Z., Shi, S., & Shang, N. (2024). The valorization of wastes and by products from cruciferous vegetables: A review on the potential utilization of cabbage, cauliflower, and broccoli by products. Foods, 13(8), 1163. https://doi.org/10.3390/foods13081163
Sissons, M. (2008). Role of durum wheat composition on the quality of pasta and bread. Food, 2(2), 75–90.
Slavin, J. L. (2006). Figs: Past, present, and future. Nutrition Today, 41(4), 180–184.
Sobota, A., Rzedzicki, Z., Zarzycki, P., & Kuzawińska, E. (2015). Application of common wheat bran for the industrial production of high-fibre pasta. International Journal of Food Science and Technology, 50(1), 111–119.
Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H. E., Altman, A., Kerem, Z., & Flaishman, M. A. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54(20), 7717–7723. https://doi.org/10.1021/jf0615454
Soto-Maldonado, M., Concha-Olmos, J., & Zúñiga-Hansen, M. E. (2020). The effect of enzymatically treated ripe banana flour on the sensory quality and glycemic response of banana-wheat flour composite muffins. Journal of Food Science and Technology, 57(11), 3621–3627. https://doi.org/10.1007/s13197-020-04419-0
Takma, E. U., Balçık, E., & Sahin-Nadeem, H. (2021). Physicochemical and sensory properties of gluten-free cupcakes added with fig seeds pomace flour. Journal of Food Processing and Preservation, 45(12), e15619. https://doi.org/10.1111/jfpp.15619
Taghavi, E., Sharifi, A., Anarjan, N., & Lani, M. N. (2023). Fig (Ficus carica) shelf life. In M. F. Ramadan (Ed.), Fig (Ficus carica): Production, processing, and properties (pp. xx–xx). Springer, Cham. https://doi.org/10.1007/978-3-031-25713-5
Taheri, S., & Hosseini, S. S. (2025). Waste not, want not: Comprehensive valorization of fruit and vegetable waste from single product recovery to zero waste strategies. Cleaner Waste Systems, 11, 100300. https://doi.org/10.1016/j.cwsc.2024.100300
Teruel-Andreu, C., Andreu-Coll, L., López-Lluch, D., Sendra, E., Hernández, F., & Cano-Lamadrid, M. (2021). Ficus carica fruits, by-products and based products as potential sources of bioactive compounds: A review. Agronomy, 11(9), 1834. https://doi.org/10.3390/agronomy11091834
Teterycz, D., & Sobota, A. (2023). Use of high-protein and high-dietary-fibre vegetable processing waste from bell pepper and tomato for pasta fortification. Foods, 12(13), 2567. https://doi.org/10.3390/foods12132567
Tudoricǎ, C. M., Kuri, V., & Brennan, C. S. (2002). Nutritional and physicochemical characteristics of dietary fiber enriched pasta. Journal of Agricultural and Food Chemistry, 50(2), 347–356. https://doi.org/10.1021/jf010963m
Veberic, R., Colaric, M., & Stampar, F. (2008). Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chemistry, 106(1), 153–157. https://doi.org/10.1016/j.foodchem.2007.05.040
Yang, Q., Liu, Y., Guo, Y., Jiang, Y., Wen, L., & Yang, B. (2023). New insights of fig (Ficus carica L.) as a potential functional food. Trends in Food Science & Technology, 140, 104146. https://doi.org/10.1016/j.tifs.2023.104146
Yusuf, M. (2017). Agro industrial waste materials and their recycled value added applications: Review. In L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of Ecomaterials (Vol. 1, pp. 1–11). Springer, Cham. https://doi.org/10.1007/978 3 319 48281 1_16 1
Zahid, A., & Khedkar, R. (2021). Valorisation of fruit and vegetable wastes: A review. Current Nutrition & Food Science, 17(5), 519–528. https://doi.org/10.2174/1573401317666210128122120
Zang, P., Gao, Y., Chen, P., Lv, C., & Zhao, G. (2022). Recent advances in the study of wheat protein and other food components affecting the gluten network and the properties of noodles. Foods, 11(23), 3824. https://doi.org/10.3390/foods11233824
Zhao, Y. H., Manthey, F., Chang, K. C. S., Hou, H. J., & Yuan, S. H. (2005). Quality characteristics of spaghetti as affected by green and yellow pea, lentil, and chickpea flours. Journal of Food Science, 70(6), S371–S376. https://doi.org/10.1111/j.1365-2621.2005.tb11410.x
