Bioactive retention in 3D-printed strawberry snacks: Influence of fruit size and processing

Main Article Content

Boris Duralija
Anica Bebek Markovinović
Predrag Putnik
Ines Šoštarić
Dhika Prita Hapsari
Branimir Pavlić
Luna Maslov Bandić
Amin Mousavi Khaneghah
Danijela Bursać Kovačević

Keywords

strawberries; fruit size; bioactive compounds; 3D food printing; functional foods

Abstract

Strawberries (Fragaria × ananassa Duch.) are rich in bioactive compounds and antioxidants, making them promising for functional food development. This study examined how fruit size (<15 g, 15–30 g, >30 g) affects the bioactive composition and antioxidant activity of fresh strawberries and three-dimensional (3D)-printed strawberry-based snacks using the “Albion” cultivar. Smaller fruits (<15 g) showed the highest total phenolic (134.02 ± 1.76 mg GAE/100 g) and anthocyanin contents (17.74 ± 0.26 mg Pg-3-Glc/100 g), with anthocyanins better retained in 3D-printed products (15.96 ± 0.30 mg Pg-3-Glc/100 g). Although 3D printing reduced anthocyanins by ~26%, antioxidant activity remained stable (DPPH–fresh: 295.73 ± 0.21 µmol TE/100 g vs. 3D-printed: 299.06 ± 0.21 µmol TE/100 g). A significant inverse correlation between pH and anthocyanins (r = –0.999, p = 0.02) emphasized acidity as a key factor in pigment stability. These results highlight the importance of fruit size and processing conditions for maximizing the nutritional value of 3D-printed functional foods.

Abstract 151 | PDF Downloads 76 XML Downloads 114 HTML Downloads 0

References

Alberts, A., Moldoveanu, E.T., Niculescu, A.G. and Grumezescu, A.M. (2025). Vitamin C: A comprehensive review of its role in health, disease prevention, and therapeutic potential. Molecules 30(3), 748. https://doi.org/10.3390/molecules30030748
An, X., Kopka, J., Rode, M. and Zude-Sasse, M. (2024). Relationship of cell size distribution and biomechanics of strawberry fruit under varying Ca and N supply. Food and Bioprocess Technology 18(2), 1244–1258. https://doi.org/10.1007/s11947-024-03491-0
Bebek Markovinović, A., Bosiljkov, T., Janči, T., Kostić, M., Dedović, N., Lučić, E., … Bursać Kovačević, D. (2024a). Characterization of antioxidant bioactive compounds and rheological, color and sensory properties in 3D-printed fruit snacks. Foods 13(11), 1623. https://doi.org/10.3390/foods13111623
Bebek Markovinović, A., Brdar, D., Putnik, P., Bosiljkov, T., Durgo, K., Huđek Turković, A., … Bursać Kovačević, D. (2024b). Strawberry tree fruits (Arbutus unedo L.): Bioactive composition, cellular antioxidant activity, and 3D printing of functional foods. Food Chemistry 433, 137287. https://doi.org/10.1016/j.foodchem.2023.137287
Bebek Markovinović, A., Putnik, P., Bosiljkov, T., Kostelac, D., Frece, J., Markov, K., … Bursać Kovačević, D. (2023). 3D printing of functional strawberry snacks: Food design, texture, antioxidant bioactive compounds, and microbial stability. Antioxidants 12(2), 436. https://doi.org/10.3390/antiox12020436
Benzie, I.F.F. (1996). An automated, specific, spectrophotometric method for measuring ascorbic acid in plasma (EFTSA). Clinical Biochemistry 29(2): 111–116. https://doi.org/10.1016/0009-9120(95)02013-6
Cano-Lamadrid, M. and Artés-Hernández, F. (2022). Thermal and non-thermal treatments to preserve and encourage bioactive compounds in fruit- and vegetable-based products. Foods, 11(21), 3400. https://doi.org/10.3390/foods11213400
Chang, C.C., Yang, M.H., Wen, H.M. and Chern, J.C. (2020). Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis 10(3), 178-182. https://doi.org/10.38212/2224-6614.2748
Chen, Y., Belwal, T., Xu, Y., Ma, Q., Li, D., Li, L., … Luo, Z. (2022). Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Critical Reviews in Food Science and Nutrition 63(27): 8639–8671. https://doi.org/10.1080/10408398.2022.2063250
Cockerton, H.M., Karlström, A., Johnson, A.W., Li, B., Stavridou, E., Hopson, K.J., … Harrison, R.J. (2021). Genomic informed breeding strategies for strawberry yield and fruit quality traits. Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.724847
Ezzat-Zadeh, Z., Henning, S.M., Yang, J., Woo, S.L., Lee, R.P., Huang, J., … Li, Z. (2021). California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutrition Research 85: 60–70. https://doi.org/10.1016/j.nutres.2020.12.006
Fagherazzi, A.F., Suek Zanin, D., Soares dos Santos, M.F., Martins de Lima, J., Welter, P.D., Francis Richter, A., … Baruzzi, G. (2021). Initial crown diameter influences on the fruit yield and quality of strawberry pircinque. Agronomy 11(1), 184. https://doi.org/10.3390/agronomy11010184
Fisher, G.J. (2022). How will self-manufacture and the maker movement reshape consumer preferences? Research Technology Management 65(4), 18–26. https://doi.org/10.1080/08956308.2022.2071063
Guo, J., Zhang, M., Law, C.L. and Luo, Z. (2023). 3D printing technology for prepared dishes: Printing characteristics, applications, challenges and prospects. Critical Reviews in Food Science and Nutrition 64(31): 11437–11453. https://doi.org/10.1080/10408398.2023.2238826
Howard, L.R., Clark, J.R. and Brownmiller, C. (2003). Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. Journal of the Science of Food and Agriculture 83(12): 1238–1247. https://doi.org/10.1002/jsfa.1532
Huang, G., Wang, Q., Zhong, Q., Chen, Y., Yang, X., Jin, W., & Xiao, G. (2024). Improving color and digestion resistibility of 3D-printed ready-to-eat starch gels using anthocyanins. Lebensmittel-Wissenschaft & Technologie 213. https://doi.org/10.1016/j.lwt.2024.116990
Lee, J., Durst, R.W., Wrolstad, R.E., Eisele, T., Giusti, M.M., Hach, J., … Wightman, J.D. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the ph differential method: Collaborative study. Journal of AOAC International 88(5): 1269–1278. https://doi.org/10.1093/jaoac/88.5.1269
Newerli-Guz, J., Śmiechowska, M., Drzewiecka, A. and Tylingo, R. (2023). Bioactive ingredients with health-promoting properties of strawberry fruit (Fragaria x ananassa Duchesne). Molecules 28(6). https://doi.org/10.3390/molecules28062711
Nhan, M.T. and Quyen, D.K. (2023). Effects of heating process on kinetic degradation of anthocyanin and vitamin C on hardness and sensory value of strawberry soft candy. Acta Scientiarum Polonorum Technologia Alimentaria 22(2): 227–236. https://doi.org/10.17306/j.afs.2023.1133
Oliveira, S.M., Gruppi, A., Vieira, M.V., Matos, G.S., Vicente, A.A., Teixeira, J.A.C., … Pa strana, L.M. (2021). How additive manufacturing can boost the bioactivity of baked functional foods. Journal of Food Engineering 294, 110394. https://doi.org/10.1016/j.jfoodeng.2020.110394
Patel, H., Taghavi, T. and Samtani, J.B. (2023). Fruit quality of several strawberry cultivars during the harvest season under high tunnel and open field environments. Horticulturae 9(10), 1084. https://doi.org/10.3390/horticulturae9101084
Priyadarshi, R., Jayakumar, A., de Souza, C.K., Rhim, J.W. and Kim, J.T. (2024). Advances in strawberry postharvest preservation and packaging: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 23(4), e13417. https://doi.org/10.1111/1541-4337.13417
Saini, R.K., Khan, M.I., Shang, X., Kumar, V., Kumari, V., Kesarwani, A. and Ko, E.Y. (2024). Dietary sources, stabilization, health benefits, and industrial application of anthocyanins—A review. Foods 13(8), 1227. https://doi.org/10.3390/foods13081227
Salazar-Orbea, G.L., García-Villalba, R., Bernal, M.J., Hernández, A., Tomás-Barberán, F.A. and Sánchez-Siles, L.M. (2023). Stability of phenolic compounds in apple and strawberry: Effect of different processing techniques in industrial set up. Food Chemistry 401, 134099. https://doi.org/10.1016/j.foodchem.2022.134099
Salazar-Orbea, G.L., García-Villalba, R., Tomás-Barberán, F.A. and Sánchez-Siles, L. M. (2021). High-pressure processing vs. thermal treatment: Effect on the stability of polyphenols in strawberry and apple products. Foods 10(12), 2919. https://doi.org/10.3390/foods10122919
Sharma, R.R., Busatto, N., Matsumoto, D., Tadiello, A., Vrhovsek, U. and Costa, F. (2019). Multifaceted analyses disclose the role of fruit size and skin-russeting in the accumulation pattern of phenolic compounds in apple. Plos One 14(7), e0219354. https://doi.org/10.1371/journal.pone.0219354
Shortle, E., O'Grady, M.N., Gilroy, D., Furey, A., Quinn, N. and Kerry, J.P. (2014). Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Science 98(4), 828–834. https://doi.org/10.1016/j.meatsci.2014.07.001
Simkova, K., Veberic, R., Hudina, M., Grohar, M.C., Ivancic, T., Smrke, T., … Jakopic, J. (2023). Berry size and weight as factors influencing the chemical composition of strawberry fruit. Journal of Food Composition and Analysis 123, 105509. https://doi.org/10.1016/j.jfca.2023.105509
Šamec, D., Maretić, M., Lugarić, I., Mešić, A., Salopek-Sondi, B. and Duralija, B. (2016). Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis. Food Chemistry 194, 828–834. https://doi.org/10.1016/j.foodchem.2015.08.095
Tan, J.D., Lee, C.P., Foo, S.Y., Tan, J.C.W., Tan, S.S.Y., Ong, E.S., … Hashimoto, M. (2023). 3D printability and biochemical analysis of revalorized orange peel waste. International Journal of Bioprinting 9(5), 105509. https://doi.org/10.18063/ijb.776
Tavares, L., de Azevedo, E.S., Sousa, L.R., Luís, J., Noreña, C.P.Z. and Oliveira, J.M. (2025). The future of functional foods: Innovations and advancements on the horizon. In Sarkar, T., Smaoui, S. and Trajkovska Petkoska, A. (Eds.), Unleashing the Power of Functional Foods and Novel Bioactives (pp. 487–505). Academic Press. https://doi.org/10.1016/b978-0-443-28862-3.00024-8
Tomašević, I., Putnik, P., Valjak, F., Pavlić, B., Šojić, B., Bebek Markovinović, A. and Bursać Kovačević, D. (2021). 3D printing as novel tool for fruit-based functional food production. Current Opinion in Food Science 41, 138–145. https://doi.org/10.1016/j.cofs.2021.03.015
Trujillo-Mayol, I., Badillo-Muñoz, G., Céspedes-Acuña, C. and Alarcón-Enos, J. (2020). The relationship between fruit size and phenolic and enzymatic composition of avocado byproducts (Persea americana Mill.): The importance for biorefinery applications. Horticulturae 6(4), 91. https://doi.org/10.3390/horticulturae6040091
Tyupova, A. and Harasym, J. (2024). Valorization of fruit and vegetables industry by-streams for 3D printing—A review. Foods 13(14), 2186. https://doi.org/10.3390/foods13142186
Vicente, A.R., Manganaris, G.A., Darre, M., Ortiz, C.M., Sozzi, G.O. and Crisosto, C.H. (2022). Compositional determinants of fruit and vegetable quality and nutritional value. In Florkowski, W.J., Banks, N.H., Shewfelt, R.L. and Prussia, S.E. (Eds.), Postharvest Handling (pp. 565–619). Academic Press. https://doi.org/10.1016/b978-0-12-822845-6.00019-1
Yuan, B., Danao, M.G.C., Stratton, J. E., Weier, S. A., Weller, C. L., & Lu, M. (2018). High pressure processing (HPP) of aronia berry purée: Effects on physicochemical properties, microbial counts, bioactive compounds, and antioxidant capacities. Innovative Food Science & Emerging Technologies 47, 249–255. https://doi.org/10.1016/j.ifset.2018.03.009
Zhao, Y., Zhang, M., Bhandari, B. and Li, C. (2025). Development of special nutritional balanced food 3D printing products based on the mixing of animals/plants materials: Research progress, applications, and trends. Critical Reviews in Food Science and Nutrition 65(30), 6985-70091. https://doi.org/10.1080/10408398.2025.2457420
Zhou, Q., Nan, X., Zhang, S., Zhang, L., Chen, J., Li, J., … Ruan, Z. (2023). Effect of 3D food printing processing on polyphenol system of loaded aronia melanocarpa and post-processing evaluation of 3D printing products. Foods 12(10), 2068. https://doi.org/10.3390/foods12102068
Zhou, X., Zhang, Z., Pu, Y., Wu, C., Yan, M. and Zhang, Q. (2023). Study on the spatial specificity of phenolics in fruit of different jujube varieties. Scientific Reports 13(1), 18894. https://doi.org/10.1038/s41598-023-46228-3