Fungal bioconversion of brewery by-products: assessment of fatty acids and sterols profiles
Main Article Content
Keywords
bioconversion, fatty acids, Lentinula edodes, Pleurotus ostreatus, sterols
Abstract
Waste management of brewery by-products is economically and environmentally problematic. In the frame of bio-recycling, this study aims to investigate the bioconversion of brewery by-products by filamentous fungi. Pleurotus ostreatus and Lentinula edodes were grown on different substrates based on brewer’s spent grains (fresh and dry). Afterwards, fatty acids and sterols were determined. Following the selection of the suitable substrate composition for fungal growth, results showed that fatty acids composition of fungal biomasses varied significantly as a function of substrate and fungal strain. Interestingly, fungal fat might be used for human nutrition due to low SFA/UFA ratios (~0.2–0.4) within the same range of vegetal oils. Sterols profile of fungi biomass revealed the predominance of ergosterol. Also, it was found that the fungi growing on by-products slightly reduced the cholesterol contents. As such, this approach focusing on the bioconversion of by-products using fungi can provide biomasses with a fat composition suitable for feed and human consumption.
References
Aranaz, P., Peña, A., Vettorazzi, A., Fabra, M.J., Martínez-Abad, A., López-Rubio, A., et al., 2021. Grifola frondosa (Maitake) extract reduces fat accumulation and improves health span in C. elegans through the Daf-16/Foxo and Skn-1/Nrf2 signalling pathways. Nutrients 13(11): 3968. 10.3390/NU13113968/S1
Athenaki, M., Gardeli, C., Diamantopoulou, P., Tchakouteu, S.S., Sarris, D., Philippoussis, A., et al., 2018. Lipids from yeasts and fungi: physiology, production and analytical considerations. Journal of Applied Microbiology 124(2): 336–367. 10.1111/JAM.13633
Barcelos, M.C.S., Ramos, C.L., Kuddus, M., Rodriguez-Couto, S., Srivastava, N., Ramteke, P.W., et al., 2020. Enzymatic potential for the valorization of agro-industrial by-products. Biotechnology Letters 42(10): 1799–1827. 10.1007/S10529-020-02957-3
Baur, A.C., Brandsch, C., König, B., Hirche, F. and Stangl, G.L., 2016. Plant oils as potential sources of vitamin D. Frontiers in Nutrition 3: 12. 10.3389/fnut.2016.00029
Bekatorou, A., Plessas, S. and Mantzourani, I., 2015. Biotechno-logical exploitation of brewery solid wastes for recovery or production of value-added products. In: Rai, V.R., editor. Advances in food biotechnology. Chichester: Wiley Blackwell. p. 395–413.
Berglund, L., Noël, M., Aitomäki, Y., Öman, T. and Oksman, K., 2016. Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Industrial Crops and Products 92: 84–92. 10.1016/j.indcrop.2016.08.003
Bhuvaneshwari, S., Hettiarachchi, H. and Meegoda, J.N., 2019. Crop residue burning in India: policy challenges and potential solutions. International Journal of Environmental Research and Public Health 16(5): 832. 10.3390/IJERPH16050832
Bianco, A., Budroni, M., Zara, S., Mannazzu, I., Fancello, F. and Zara, G., 2020. The role of microorganisms on biotransformation of brewers’ spent grain. Applied Microbiology and Biotechnology. 104(20): 8661–8678. 10.1007/s00253-020-10843-1
Boukid, F. and Gagaoua, M., 2022. Meat alternatives: a proofed commodity? Advances in Food and Nutrition Research 101: 213–236. 10.1016/BS.AFNR.2022.02.003
Boukid, F., Riudavets, J., Del Arco, L., Castellari, M., Savoldelli, S., Spranghers, T., et al., 2021a. Impact of diets including agro-industrial by-products on the fatty acid and sterol profiles of larvae biomass from Ephestia kuehniella, Tenebrio molitor and Hermetia illucens. Insects 12(8): 672. 10.3390/INSECTS12080672
Boukid, F., Rosell, C.M., Rosene, S., Bover-Cid, S. and Castellari, M., 2021b. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: present status and future perspectives. Critical Reviews in Food Science and Nutrition 62(23): 6390–6420. 10.1080/10408398.2021.1901649
Campioni, T.S., de Jesus Moreira, L., Moretto, E., Nunes, N.S.S. and de Oliva Neto, P., 2019. Biobleaching of kraft pulp using fungal xylanases produced from sugarcane straw and the subsequent decrease of chlorine consumption. Biomass and Bioenergy 121: 22–27. 10.1016/J.BIOMBIOE.2018.12.014
Cardoso, R.V.C., Carocho, M., Fernandes, A., Zied, D.C., Cobos, J.D.V., González-Paramás, A.M., et al. 2020. Influence of calcium silicate on the chemical properties of Pleurotus ostreatus Var. Florida (Jacq.) P. Kumm. Journal of Fungi 6(4): 1–16. 10.3390/JOF6040299
Challa, S., Dutta, T. and Neelapu, N.R.R., 2019. Fungal white biotechnology applications for food security: opportunities and challenges. In: Yadav, A.N., Singh, S., Mishra, S., Gupta, A., editors. Recent advancement in white biotechnology through fungi. 1st ed. Cham: Springer. p. 119–148. 10.1007/978-3-030-14846-1_4
Chandra, P., Enespa, Singh, R. and Arora, P.K., 2020. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories 19(1): 169. 10.1186/S12934-020-01428-8/FIGURES/8
Chung, Ill M., Kim, S.Y., Han, J.G., Kong, W.S., Jung, M.Y. and Kim, S.H., 2020. Fatty acids and stable isotope ratios in Shiitake mushrooms (Lentinula edodes) indicate the origin of the cultivation substrate used: a preliminary case study in Korea. Foods 9(9): 1210. 10.3390/FOODS9091210
Ciani, M., Lippolis, A., Fava, F., Rodolfi, L., Niccolai, A. and Tredici, M.R., 2021. Microbes: food for the future. Foods 10(5): 971. http://www.ncbi.nlm.nih.gov/pubmed/33925123
Cooray, S.T. and Chen, W.N., 2018. Valorization of brewer’s spent grain using fungi solid-state fermentation to enhance nutritional value. Journal of Functional Foods 42: 85–94. 10.1016/j.jff.2017.12.027
Correddu, F., Lunesu, M.F., Buffa, G., Atzori, A.S., Nudda, A., Battacone, G., et al., 2020. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals 10(1): 131. 10.3390/ANI10010131
Dai, Z., Zhou, H., Zhang, S., Gu, H., Yang, Q., Zhang, W., et al. 2018. Current advance in biological production of malic acid using wild type and metabolic engineered strains. Bioresource Technology 258: 345–353. 10.1016/j.biortech.2018.03.001
da Silva Menezes, B., Rossi, D.M. and Ayub, M.A.Z., 2017. Screening of filamentous fungi to produce xylanase and xylooligosaccharides in submerged and solid-state cultivations on rice husk, soybean hull, and spent malt as substrates. World Journal of Microbiology and Biotechnology 33(3): 1–12. 10.1007/s11274-017-2226-5
Dias, A.A., Fernandes, J.M.C., Sousa, R.M.O.F., Pinto, P.A., Amaral, C., Sampaio, A., et al., 2018. Fungal conversion and valorization of winery wastes. In: Prasad, R., editor. Mycoremediation and environmental sustainability. 1st ed. Cham: Springer. p. 239–252. 10.1007/978-3-319-77386-5_9
Duque-Acevedo, M., Belmonte-Ureña, L.J., Cortés-García, F.J. and Camacho-Ferre, F., 2020. Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Global Ecology and Conservation 22: e00902. 10.1016/J.GECCO.2020.E00902
El-Gendi, H., Saleh, A.K., Badierah, R., Redwan, E.M., El-Maradny, Y.A. and El-Fakharany, E.M., 2022. A comprehensive insight into fungal enzymes: structure, classification, and their role in mankind’s challenges. Journal of Fungi 8(1): 23. 10.3390/JOF8010023
El-Gendy, M.M.A.A., Al-Zahrani, H.A.A. and El-Bondkly, A.M.A., 2016. Genome shuffling of mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology 44(3): 171–179. 10.5941/MYCO.2016.44.3.171
EU, 2021. Horizon Europe—work programme 2021–2022. Food, bioeconomy, natural resources, agriculture and environment. European Commission. 571 p.
Fărcaş, A.C., Socaci, S.A., Mudura, E., Dulf, F.V., Vodnar, D.C., Tofană, M., et al., 2017. Exploitation of brewing industry wastes to produce functional ingredients. In: Kanauchi, M., editor. Brewing technology. London, UK: InTechOpen. 10.5772/intechopen.69231
Fernandes, J.M.C., Fraga, I., Sousa, R.M.O.F., Rodrigues, M.A.M., Sampaio, A., Bezerra, R.M.F., et al., 2020. Pretreatment of grape stalks by fungi: effect on bioactive compounds, fiber composition, saccharification kinetics and monosaccharides ratio. International Journal of Environmental Research and Public Health 17(16): 1–13. 10.3390/ijerph17165900
Ferreira, D.S., Rocha, J.C.B., Arellano, D.B. and Pallone, J.A.L., 2022. Discrimination of South American grains based on fatty acid. Quality Assurance and Safety of Crops & Foods 14(3): 30–42. 10.15586/QAS.V14I3.1064
Gmoser, R., Fristedt, R., Larsson, K., Undeland, I., Taherzadeh, M.J. and Lennartsson, P.R., 2020. From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered 11(1): 582–598. 10.1080/21655979.2020.1768694
Gnanwa, J.M., Soro, L.C., Fagbohoun, J.B., Yorou, N.S. and Kouame, L.P., 2021. Assessment of minerals, vitamins, amino and fatty acids components of Pleurotus ostreatus mushrooms cultivated and sold in the village of M’Badon (Abidjan, Côte d’Ivoire). International Journal of Current Microbiology and Applied Sciences 10(09): 276–283. 10.20546/ijcmas.2021.1009.032
Hamam, M., Chinnici, G., Di Vita, G., Pappalardo, G., Pecorino, B., Maesano, G., et al., 2021. Circular economy models in agro-food systems: a review. Sustainability 13(6): 3453. 10.3390/SU13063453
Hoa, H.T., Wang, C.L. and Wang, C.H., 2015. The effects of different substrates on the growth, yield, and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43(4): 423–434. 10.5941/MYCO.2015.43.4.423
Hultberg, M., Prade, T., Bodin, H., Vidakovic, A. and Asp, H., 2018. Adding benefit to wetlands—valorization of harvested common reed through mushroom production. Science of the Total Environment 637–638: 1395–1399. 10.1016/J.SCITOTENV.2018.05.106
Hyde, K.D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A.G.T., et al., 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97(1): 1–136. 10.1007/S13225-019-00430-9
Ibarruri, J., Cebrián, M. and Hernández, I., 2021. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. Journal of Environmental Management 281: 111901. 10.1016/J.JENVMAN.2020.111901
Jaeger, A., Arendt, E.K., Zannini, E. and Sahin, A.W., 2020. Brewer’s spent yeast (BSY), an underutilized brewing by-product. Fermentation 6(4): 123. 10.3390/FERMENTATION6040123
Karlović, A., Jurić, A., Ćorić, N., Habschied, K., Krstanović, V. and Mastanjević, K., 2020. By-Products in the malting and brewing industries—re-usage possibilities. Fermentation 6(3): 82. 10.3390/FERMENTATION6030082
Keong, C.Y., 2015. Medicinal values of selected mushrooms with special reference to anti-hypercholesterolemia. In: Kumar, S.A., editor. Hypercholesterolemia. London: IntechOpen. 10.5772/59424
Koutrotsios, G., Mountzouris, K.C., Chatzipavlidis, I. and Zervakis, G.I., 2014. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi—assessment of their effect on the final product and spent substrate properties. Food Chemistry 161: 127–135. 10.1016/j.foodchem.2014.03.121
Kumla, J., Suwannarach, N., Sujarit, K., Penkhrue, W., Kakumyan, P., Jatuwong, K., et al., 2020. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 25(12): 2811. 10.3390/molecules25122811
Linhartová, L., Michalíková, K., Šrédlová, K. and Cajthaml, T., 2020. Biodegradability of dental care antimicrobial agents chlorhexidine and octenidine by ligninolytic fungi. Molecules 25(2): 400. 10.3390/MOLECULES25020400
Liu, S., Ahmed, S., Zhang, C., Liu, T., Shao, C. and Fang, Y., 2020. Diversity and antimicrobial activity of culturable fungi associated with sea anemone Anthopleura xanthogrammica” Electronic Journal of Biotechnology 44: 41–46. 10.1016/J.EJBT.2020.01.003
Londoño-Hernandez, L., Ruiz, H.A., Ramírez, T.C., Ascacio, J.A., Rodríguez-Herrera, R. and Aguilar, C.N., 2020. Fungal detoxification of coffee pulp by solid-state fermentation. Biocatalysis and Agricultural Biotechnology 23: 101467. 10.1016/J.BCAB.2019.101467
López-Fernández, J., Benaiges, M.D. and Valero, F., 2020. Rhizopus oryzae lipase, a promising industrial enzyme: biochemical characteristics, production and biocatalytic applications. Catalysts 10(11): 1277. 10.3390/CATAL10111277
Marcus, A. and Fox, G., 2021. Fungal biovalorization of a brewing industry byproduct, brewer’s spent grain: a review. Foods 10(9): 2159. 10.3390/FOODS10092159
Meyer, V., Basenko, E.Y., Benz, J.P., Braus, G.H., Caddick, M.X., Csukai, M., et al. 2020. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology 7(1): 1–23. 10.1186/S40694-020-00095-Z
Mohajeri, S., Harsej, F., Sadeghpour, M. and Nia, J.K., 2021. Integrated reverse supply chain model for food waste based on industry 4.0 revolutions: a case study of producing the household waste recycling machine. Quality Assurance and Safety of Crops & Foods 13(4): 70–83. 10.15586/QAS.V13I4.1002
Naim, L., Alsanad, M.A., Shaban, N., El Sebaaly, Z., Fayssal, S.A. and Sassine, Y.N., 2020. Production and composition of Pleurotus ostreatus cultivated on Lithovit®-Amino25 Supplemented spent substrate. AMB Express 10(1): 1–10. 10.1186/S13568-020-01124-1/TABLES/10
Pauletto, M., Elgendy, R., Ianni, A., Marone, E., Giantin, M., Grotta, L., et al. 2020. Nutrigenomic effects of long-term grape pomace supplementation in dairy cows. Animals 10(4): 714. 10.3390/ANI10040714
Pedneault, K., Angers, P., Avis, T.J., Gosselin, A. and Tweddell, R.J., 2007. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae Var. “citrino-Pileatus” grown at different temperatures. Mycological Research 111(10): 1228–1234. 10.1016/j.mycres.2007.06.014
Pellegrino, R.M., Blasi, F., Angelini, P., Ianni, F., Alabed, H.B.R., Emiliani, C., et al. 2022. LC/MS Q-TOF metabolomic investigation of amino acids and dipeptides in Pleurotus ostreatus grown on different substrates. Journal of Agricultural and Food Chemistry 2022: 10371–1082. 10.1021/ACS.JAFC.2C04197/ASSET/IMAGES/LARGE/JF2C04197_0007.JPEG
Puglia, D., Pezzolla, D., Gigliotti, G., Torre, L., Bartucca, M.L. and Del Buono, D., 2021. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability 13(5): 2710. 10.3390/SU13052710
Rachwał, K., Waśko, A., Gustaw, K. and Polak-Berecka, M., 2020. Utilization of brewery wastes in food industry. PeerJ 8: e9427. 10.7717/peerj.9427
Radenkovs, V., Juhnevica-Radenkova, K., Górnaś, P. and Seglina, D., 2018. Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends in Food Science & Technology 77: 64–76. 10.1016/J.TIFS.2018.05.013
Reis, S.F., Coelho, E., Coimbra, M.A. and Abu-Ghannam, N., 2015. Improved efficiency of brewer’s spent grain Arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry 24: 155–164. 10.1016/J.ULTSONCH.2014.10.010
Riudavets, J., Castañé, C., Agustí, N., Del Arco, L., Diaz, I. and Castellari, M., 2020. Development and biomass composition of Ephestia kuehniella (Lepidoptera: Pyralidae), Tenebrio molitor (Coleoptera: Tenebrionidae), and Hermetia illucens (Diptera: Stratiomyidae) reared on different byproducts of the agri-food industry. Journal of Insect Science 20(4): 17. 10.1093/jisesa/ieaa085
Severini, C., Azzollini, D., Jouppila, K., Jussi, L., Derossi, A. and De Pilli, T., 2015. Effect of enzymatic and technological treatments on solubilisation of Arabinoxylans from brewer’s spent grain. Journal of Cereal Science 65: 162–66. 10.1016/j.jcs.2015.07.006
Sinanoglou, V.J., Zoumpoulakis, P., Heropoulos, G., Proestos, C., Ćirić, A., Petrovic, J., et al. 2015. Lipid and fatty acid profile of the edible fungus Laetiporus sulphurous. Antifungal and antibacterial properties. Journal of Food Science and Technology 52(6): 3264. 10.1007/S13197-014-1377-8
Sousa, D., Venâncio, A., Belo, I. and Salgado, J.M., 2018. Mediterranean agro-industrial wastes as valuable substrates for lignocellulolytic enzymes and protein production by solid-state fermentation. Journal of the Science of Food and Agriculture 98(14): 5248–5256. 10.1002/jsfa.9063
Statistica, 2021. Beer—worldwide | Statista market forecast. Available from: https://www.statista.com/outlook/10010000/100/beer/worldwide
Tartrakoon, W., Tartrakoon, T. and Kitsupee, N., 2016. Effects of the ratio of unsaturated fatty acid to saturated fatty acid on the growth performance, carcass and meat quality of finishing pigs. Animal Nutrition 2(2): 79–85. 10.1016/j.aninu.2016.03.004
Verni, M., Pontonio, E., Krona, A., Jacob, S., Pinto, D., Rinaldi, F., et al. 2020. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: characterization of phenolic compounds and bioactive peptides. Frontiers in Microbiology 11: 1831. 10.3389/FMICB.2020.01831/TEXT
Wang, D., Sakoda, A. and Suzuki, M., 2001. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technology 78(3): 293–300. 10.1016/S0960-8524(01)00002-5
Wang, H., Kaur, G., Pensupa, N., Uisan, K., Du, C., Yang, X., et al., 2018. Textile waste valorization using submerged filamentous fungal fermentation. Process Safety and Environmental Protection 118: 143–151. 10.1016/J.PSEP.2018.06.038
Weete, J.D., Abril, M. and Blackwell, M., 2010. Phylogenetic distribution of fungal sterols. PLoS One 5(5): e10899. 10.1371/journal.pone.0010899
Wołoszyn, J., Haraf, G., Okruszek, A., Wereńska, M., Goluch, Z. and Teleszko, M., 2020. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poultry Science 99(2): 1216–1224. 10.1016/J.PSJ.2019.10.026
Xiros, C. and Studer, M.H., 2017. A multispecies fungal biofilm approach to enhance the celluloyltic efficiency of membrane reactors for consolidated bioprocessing of plant biomass. Frontiers in Microbiology 8: 1930. 10.3389/FMICB.2017.01930/BIBTEX
Xu, X., Lin, M., Zang, Q. and Shi, S., 2018. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresource Technology 247: 88–95. 10.1016/j.biortech.2017.08.192
Yang, R., Xue, L., Zhang, L., Wang, X., Qi, X., Jiang, J., et al., 2019. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 8(8): 334. 10.3390/foods8080334
Zhang, X.Y., Li, B., Huang, B.C., Wang, F.B., Zhang, Y.Q., Zhao, S.G., et al., 2022. Production, biosynthesis, and commercial applications of fatty acids from oleaginous fungi. Frontiers in Nutrition 9: 830. 10.3389/FNUT.2022.873657/BIBTEX
